tkinter+tensorflow,利用神经网络拟合函数可视化小程序

本文介绍了一个使用Tkinter和Tensorflow构建的小程序,旨在通过神经网络拟合函数并可视化其过程。程序展示了不同参数如隐藏层节点数、学习率对拟合效果的影响。在数据点较少或学习率过大时,可能会出现过拟合或不收敛的问题。此外,文中指出模型复杂度并非越大越好,平衡精度与速度是关键。未来计划探索不同优化器和异常值的影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

    写这个小程序的目的有2个:

    1. 向同事证明神经网络可以拟合函数;

    2. 可视化地感受不同参数对拟合过程的影响。

    下图是用tkinter做的GUI界面,请忽略丑陋的布局。

    1. 网络结构:

    理论认为:当隐藏层节点数足够多时,只需三层BP网络即可逼近任何连续函数。

    程序中网络结构十分简单:1输入,1输出,中间隐藏层的节点数默认为10,为可调参数,目标函数为二次函数,数据点加了噪音。

    2. 当数据过少时,容易出现过拟合:

    当数据点的个数只有4个时,为了使得loss最小,神经网络经过了这四个点,学习结果为3个分段函数,与目标值二次函数存在较大出入,出现了明显的过拟合。

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值