写这个小程序的目的有2个:
1. 向同事证明神经网络可以拟合函数;
2. 可视化地感受不同参数对拟合过程的影响。
下图是用tkinter做的GUI界面,请忽略丑陋的布局。
1. 网络结构:
理论认为:当隐藏层节点数足够多时,只需三层BP网络即可逼近任何连续函数。
程序中网络结构十分简单:1输入,1输出,中间隐藏层的节点数默认为10,为可调参数,目标函数为二次函数,数据点加了噪音。
2. 当数据过少时,容易出现过拟合:
当数据点的个数只有4个时,为了使得loss最小,神经网络经过了这四个点,学习结果为3个分段函数,与目标值二次函数存在较大出入,出现了明显的过拟合。

本文介绍了一个使用Tkinter和Tensorflow构建的小程序,旨在通过神经网络拟合函数并可视化其过程。程序展示了不同参数如隐藏层节点数、学习率对拟合效果的影响。在数据点较少或学习率过大时,可能会出现过拟合或不收敛的问题。此外,文中指出模型复杂度并非越大越好,平衡精度与速度是关键。未来计划探索不同优化器和异常值的影响。
最低0.47元/天 解锁文章
412

被折叠的 条评论
为什么被折叠?



