Image Inpainting with Cascaded Modulation GAN and Object-Aware Training

文章提出了一种新的图像修复方法CM-GAN,利用傅里叶卷积块的编码器和级联的全局-空间调制解码器,有效捕捉图像结构和语义。实验表明,CM-GAN在处理复杂图像大孔问题上超越现有技术,尤其在保持全局一致性与局部细节真实性的任务中表现出色。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Haitian Zheng1,2, Zhe Lin2, Jingwan Lu2, Scott Cohen2, Eli Shechtman2, Connelly Barnes2, Jianming Zhang2, Ning Xu2, Sohrab Amirghodsi2, and Jiebo Luo1

Recent image inpainting methods have made great progress but often struggle to generate plausible image structures when dealing with large holes in complex images. This is partially due to the lack of effective network structures that can capture both the long-range dependency and high-level semantics of an image. We propose cascaded modulation GAN (CM-GAN), a new network design consisting of an encoder with Fourier convolution blocks that extract multi-scale feature representations from the input image with holes and a dual-stream decoder with a novel cascaded global-spatial modulation block at each scale level. In each decoder block, global modulation is first applied to perform coarse and semantic-aware structure synthesis, followed by spatial modulation to further adjust the feature map in a spatially adaptive fashion. In

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值