Attention-Based Bidirectional Long Short-Term Memory Networks forRelation Classification
论文来源:https://www.aclweb.org/anthology/P16-2034
关系分类是自然语言处理(NLP)领域中重要的语义处理任务。最先进的系统仍然依赖于词汇资源,如WordNet或NLP系统 像依赖解析器和命名实体识别器(NER)获得高级功能。另一个挑战是重要的 信息可以出现在任何位置 这句话。要解决这些问题, 我们提出基于注意力的双向 长短期记忆网络(AttBLSTM)用于捕获句子中最重要的语义信息。 SemEval-2010的实验结果关系分类任务表明我们的方法优于大多数现有方法,只有word vectors.
关系分类是寻找名词对之间的语义关系的任务,对于许多NLP应用程序很有用,例如信息提取,问答系统,传统的关系分类方法使用来自词汇资源的手工提取特征,通常基于模式匹配,并取得了很高的成绩, 这些方法的一个缺点是许多传统的NLP系统被用于提取高级特征。
论文提出了一种新的神经网络Att-BLSTM用于关系分类。模型利用双向长短期记忆网络(BLSTM)的神经注意机制捕获句子中最重要的语义信息。这个模型没有使用任何从词汇资源或NLP派生的特征。论文的特点是使用具有注意机制的BLSTM,它可以自动关注具有决定性作用的词语在分类上,捕获句子中最重要的语义信息,而不使用额外的知识和NLP系统。
相关工作
多年来,已经提出了用于关系分类的各种方法。他们中的大多数是基于模式匹配并

该论文提出了一种名为Att-BLSTM的新型神经网络模型,用于关系分类任务。该模型利用注意力机制和双向长短期记忆网络,捕捉句子中的关键语义信息,无需依赖词汇资源或NLP系统。在SemEval-2010关系分类任务上的实验结果显示,Att-BLSTM优于多数现有方法。
最低0.47元/天 解锁文章
840

被折叠的 条评论
为什么被折叠?



