1.吴恩达机器学习视频笔记
吴恩达机器学习笔记(一)——机器学习概念
吴恩达机器学习笔记(二)——单变量线性回归
吴恩达机器学习笔记(三)——线性代数及应用
吴恩达机器学习笔记(四)——多元线性回归
吴恩达机器学习笔记(五)——逻辑回归
吴恩达机器学习笔记(六)——过拟合问题
吴恩达机器学习笔记(七)——初识神经网络
吴恩达机器学习笔记(八)——深入神经网络
吴恩达机器学习笔记(九)——机器学习系统的建议
吴恩达机器学习笔记(十)——机器学习系统设计
吴恩达机器学习笔记(十一)——支持向量机
吴恩达机器学习笔记(十二)——聚类
吴恩达机器学习笔记(十三)——降维
吴恩达机器学习笔记(十四)——异常检测
吴恩达机器学习笔记(十五)——推荐系统
吴恩达机器学习笔记(十六)——大数据集处理
2.机器学习编程作业(Python实现)
吴恩达机器学习课后作业——线性回归
吴恩达机器学习课后作业——逻辑回归
吴恩达机器学习课后作业——多元分类及前向传播
吴恩达机器学习课后作业——反向传播
吴恩达机器学习课后作业——偏差和方差
吴恩达机器学习课后作业——支持向量机
吴恩达机器学习课后作业——KMeans和PCA
吴恩达机器学习课后作业——异常检测和推荐系统