LeetCode 238. 除自身以外数组的乘积

使用一维数组和双指针优化算法解决数组乘积问题
这篇博客介绍了如何利用数据结构一维数组和双指针策略来解决计算数组中每个元素除自身外的乘积的问题。通过遍历数组两次,分别构建前缀和和后缀乘积数组,并在第二次遍历时结合两者得到答案。同时,通过优化空间复杂度,用答案数组直接存储后缀乘积,进一步提高了效率。

1、数据结构:一维数组 pre 和 sub 分别存放 nums[i] 对应 i 的前缀和后缀的乘积。

2、双指针:对 nums 进行遍历,在遍历的过程完成对 pre 和 sub 的填写。之后对 pre 和 sub 进行遍历,在对应的位置上相乘,得到最终的answer。

优化:对空间复杂度进行优化,因为ans本身数据结构与pre和sub一致,所以直接用ans代替pre,在第二次遍历nums的过程中,维护整型结构sub(初值为1),保存位置i对应后缀的乘积(实现见Java版的代码)

Go

func productExceptSelf(nums []int) []int {
    var length int=len(nums)
    var pre, sub, answer []int=make([]int, length), make([]int, length), make([]int, length)
    pre[0], sub[length-1]=1, 1
    for i:=1; i<length; i++{
        pre[i]=pre[i-1]*nums[i-1]
        sub[length-i-1]=sub[length-i]*nums[length-i]
    }
    for k, _:=range nums{ answer[k]=pre[k]*sub[k] }
    return answer
}

Java

class Solution {
    public int[] productExceptSelf(int[] nums) {
        int len=nums.length;
        int[] ans=new int[len];
        ans[0]=1;
        int sub=1;
        for(int i=1; i<len; i++){ ans[i]=ans[i-1]*nums[i-1]; }
        for(int j=len-1; j>=0; j--){ 
            ans[j]=ans[j]*sub;
            sub=sub*nums[j]; 
        }
        return ans;
    }
}

每次都能想到正确解法,但每次都想的不完整,唉😔 

### 问题分析 LeetCode238 题要求我们构造一个数组,使得每个元素 `answer[i]` 等于原数组 `nums[i]` 之外所有元素的乘积。题目限制不能使用法,并且时间复杂度必须为 O(n)。 如果采用暴力双重循环的方法,则时间复杂度会达到 O(n²),在大规模输入时会导致超时[^2]。因此需要一种更高效的策略。 ### 解题思路 一种常见且高效的做法是利用两个辅助数组: - **左乘积数组**:记录每个元素左侧所有元素的乘积。 - **右乘积数组**:记录每个元素右侧所有元素的乘积。 最终结果数组就是左右乘积相乘的结果。该方法的时间复杂度和空间复杂度均为 O(n)。 为了满足不使用额外空间的要求(输出数组外),可以将左右乘积的计算过程合并到结果数组中进行优化。 ### C语言实现代码如下: ```c int* productExceptSelf(int* nums, int numsSize, int* returnSize) { *returnSize = numsSize; int *result = (int *)malloc(numsSize * sizeof(int)); // 初始化第一个元素为1,因为第一个元素左侧没有元素 result[0] = 1; // 计算每个元素左侧的乘积 for (int i = 1; i < numsSize; ++i) { result[i] = result[i - 1] * nums[i - 1]; } // 使用临时变量保存右侧乘积,从右向左遍历 int rightProduct = 1; for (int i = numsSize - 1; i >= 0; --i) { result[i] = result[i] * rightProduct; rightProduct *= nums[i]; } return result; } ``` ### 关键点说明 - **初始化**:首先设置 `result[0] = 1`,因为第一个元素左边没有数。 - **左乘积计算**:从索引 1 开始,每次用前一个位置的 `result` 值乘以当前索引前面的 `nums` 元素值。 - **右乘积与结果整合**:从右往左遍历,使用一个变量 `rightProduct` 来保存右边元素的乘积,并将其乘入 `result[i]` 中。 - **空间优化**:整个过程中只使用了一个结果数组和一个临时变量,从而实现了 O(1) 额外空间复杂度(不包括输出数组)。 ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值