爬虫遇到头疼的验证码?Python实战讲解弹窗处理和验证码识别

python 同时被 3 个专栏收录
126 篇文章 4 订阅
13 篇文章 0 订阅
56 篇文章 7 订阅

前言

在我们写爬虫的过程中,目标网站常见的干扰手段就是设置验证码等,本就将基于Selenium实战讲解如何处理弹窗和验证码,爬取的目标网站为某仪器预约平台

img

可以看到登录所需的验证码构成比较简单,是彩色的标准数字配合简单的背景干扰****img

因此这里的验证码识别不需要借助人工智能的手段,可直接利用二值法对图片处理后交给谷歌的识别引擎tesseract-OCR即可获得图中的数字。

seleniumtesseract 的配置读者可自行搜索,本文不做介绍)

Python实战

首先导入所需模块

import re
# 图片处理
from PIL import Image
# 文字识别
import pytesseract
# 浏览器自动化
from selenium import webdriver
import time

解决弹出框问题

先尝试打开示例网站

url = 'http://lims.gzzoc.com/client'
driver = webdriver.Chrome()
driver.get(url)
time.sleep(30)

img

有趣的地方出现了,网站显示了一个我们前面没有看到的弹窗,简单说一下弹窗的知识点,初学者可以将弹出框简单分为alert和非alert

alert式弹出框

  • alert(message)方法用于显示带有一条指定消息和一个 OK 按钮的警告框
  • confirm(message)方法用于显示一个带有指定消息和 OK 及取消按钮的对话框
  • prompt(text,defaultText)方法用于显示可提示用户进行输入的对话框

看一下这个弹出框的js是怎么写的:

img看起来似乎是alert式弹出框,那么直接用driver.switch_to.alert吗?先不急

非传统alert式弹出框的处理

  • 弹出框位于div层,跟平常定位方法一样
  • 弹出框是嵌套的iframe层,需要切换iframe
  • 弹出框位于嵌套的handle,需要切换窗口

所以我们对这个弹出框进行元素审查

img

所以问题实际上很简单,直接定位按钮并点击即可

url = 'http://lims.gzzoc.com/client'

driver = webdriver.Chrome()
driver.get(url)
time.sleep(1)
driver.maximize_window() # 最大化窗口
driver.find_element_by_xpath("//div[@class='jconfirm-buttons']/button").click()

获取图片位置并截图

二值法处理验证码的简单思路如下:

  1. 切割截取验证码所在的图片
  2. 转为灰度后二值法将有效信息转为黑,背景和干扰转为白色
  3. 处理后的图片交给文字识别引擎
  4. 输入返回的结果并提交

切割截取验证码的图片进一步思考解决策略:首先获取网页上图片的css属性,根据size和location算出图片的坐标;然后截屏;最后用这个坐标进一步去处理截屏即可(由于验证码js的特殊性,不能简单获取img的href后下载图片后读取识别,会导致前后不匹配)

img = driver.find_element_by_xpath('//img[@id="valiCode"]')
time.sleep(1)
location = img.location
size = img.size
# left = location['x']
# top = location['y']
# right = left + size['width']
# bottom = top + size['height']
left = 2 * location['x']
top = 2 * location['y']
right = left + 2 * size['width'] - 10
bottom = top + 2 * size['height'] - 10
driver.save_screenshot('valicode.png')
page_snap_obj = Image.open('valicode.png')
image_obj = page_snap_obj.crop((left, top, right, bottom))
image_obj.show()

正常情况下直接使用注释的四行代码即可,但不同的电脑不同的浏览器,缩放倍率存在差异,因此如果截取出的图存在偏差这需要考虑乘上倍率系数。最后可以再加减数值进行微调

img

可以看到图片这成功截取出来了!

验证码图片的进一步处理

这个阈值需要具体用Photoshop或者其他工具尝试,即找到一个像素阈值能够将灰度图片中真实数据和背景干扰分开,本例经测试阈值为205

img = image_obj.convert("L")  # 转灰度图
pixdata = img.load()
w, h = img.size
threshold = 205
# 遍历所有像素,大于阈值的为黑色
for y in range(h):
    for x in range(w):
        if pixdata[x, y] < threshold:
            pixdata[x, y] = 0
        else:
            pixdata[x, y] = 255

根据像素二值结果重新生成图片

data = img.getdata()
w, h = img.size
black_point = 0
for x in range(1, w - 1):
    for y in range(1, h - 1):
        mid_pixel = data[w * y + x]
        if mid_pixel < 50:
            top_pixel = data[w * (y - 1) + x]
            left_pixel = data[w * y + (x - 1)]
            down_pixel = data[w * (y + 1) + x]
            right_pixel = data[w * y + (x + 1)]
            if top_pixel < 10:
                black_point += 1
            if left_pixel < 10:
                black_point += 1
            if down_pixel < 10:
                black_point += 1
            if right_pixel < 10:
                black_point += 1
            if black_point < 1:
                img.putpixel((x, y), 255)
            black_point = 0
img.show()

图像处理前后对比如下

img

文字识别

将处理后的图片就给谷歌的文字识别引擎就能完成识别

result = pytesseract.image_to_string(img)
# 可能存在异常符号,用正则提取其中的数字
regex = '\d+'
result = ''.join(re.findall(regex, result))
print(result)

识别结果如下

img

提交账号密码、验证码等信息

在处理完验证码之后,现在我们就可以向网站提交账号密码、验证码等登陆所需信息

driver.find_element_by_name('code').send_keys(result)
driver.find_element_by_name('userName').send_keys('xxx')
driver.find_element_by_name('password').send_keys('xxx')
# 最后点击确定
driver.find_element_by_xpath("//div[@class='form-group login-input'][3]").click()

需要注意的是,二值法识别验证码成功率不是100%,因此需要考虑到验证码识别错误,需要单击图片更换验证码重新识别,可以将上述代码拆解成多个函数后,用如下循环框架试错

while True:
    try:
        ...
        break
    except:
        driver.find_element_by_id('valiCode').click()

为了方便理解,代码的书写没有以函数形式呈现,欢迎读者自行尝试修改!

小结

成功登录后就可以获得个人的cookies,接下来可以继续用selenium进行浏览器自动化或者把cookies传给requests,后面就能爬取需要的信息做分析或者实现一些自动化功能,但由于涉及到的爬虫知识点比较多,我们会在后续的爬虫专题文章中进行分享!

  • 5
    点赞
  • 5
    评论
  • 58
    收藏
  • 一键三连
    一键三连
  • 扫一扫,分享海报

<p> <span style="font-size:14px;color:#337FE5;">【为什么学爬虫?】</span> </p> <p> <span style="font-size:14px;">       1、爬虫入手容易,但是深入较难,如何写出高效率的爬虫,如何写出灵活性高可扩展的爬虫都是一项技术活。另外在爬虫过程中,经常容易遇到被反爬虫,比如字体反爬、IP识别验证码等,如何层层攻克难点拿到想要的数据,这门课程,你都能学到!</span> </p> <p> <span style="font-size:14px;">       2、如果是作为一个其他行业的开发者,比如app开发,web开发,学习爬虫能让你加强对技术的认知,能够开发出更加安全的软件网站</span> </p> <p> <br /> </p> <span style="font-size:14px;color:#337FE5;">【课程设计】</span> <p class="ql-long-10663260"> <span> </span> </p> <p class="ql-long-26664262" style="font-size:11pt;color:#494949;"> 一个完整的爬虫程序,无论大小,总体来说可以分成三个步骤,分别是: </p> <ol> <li class="" style="font-size:11pt;color:#494949;"> 网络请求:模拟浏览器的行为从网上抓取数据。 </li> <li class="" style="font-size:11pt;color:#494949;"> 数据解析:将请求下来的数据进行过滤,提取我们想要的数据。 </li> <li class="" style="font-size:11pt;color:#494949;"> 数据存储:将提取到的数据存储到硬盘或者内存中。比如用mysql数据库或者redis等。 </li> </ol> <p class="ql-long-26664262" style="font-size:11pt;color:#494949;"> 那么本课程也是按照这几个步骤循序渐进的进行讲解,带领学生完整的掌握每个步骤的技术。另外,因为爬虫的多样性,在爬取的过程中可能会发生被反爬、效率低下等。因此我们又增加了两个章节用来提高爬虫程序的灵活性,分别是: </p> <ol> <li class="" style="font-size:11pt;color:#494949;"> 爬虫进阶:包括IP代理,多线程爬虫,图形验证码识别、JS加密解密、动态网页爬虫、字体反爬识别等。 </li> <li class="" style="font-size:11pt;color:#494949;"> Scrapy分布式爬虫:Scrapy框架、Scrapy-redis组件、分布式爬虫等。 </li> </ol> <p class="ql-long-26664262" style="font-size:11pt;color:#494949;"> 通过爬虫进阶的知识点我们能应付大量的反爬网站,而Scrapy框架作为一个专业的爬虫框架,使用他可以快速提高我们编写爬虫程序的效率速度。另外如果一台机器不能满足你的需求,我们可以用分布式爬虫让多台机器帮助你快速爬取数据。 </p> <p style="font-size:11pt;color:#494949;">   </p> <p class="ql-long-26664262" style="font-size:11pt;color:#494949;"> 从基础爬虫到商业化应用爬虫,本套课程满足您的所有需求! </p> <p class="ql-long-26664262" style="font-size:11pt;color:#494949;"> <br /> </p> <p> <br /> </p> <p> <span style="font-size:14px;background-color:#FFFFFF;color:#337FE5;">【课程服务】</span> </p> <p> <span style="font-size:14px;">专属付费社群+定期答疑</span> </p> <p> <br /> </p> <p class="ql-long-24357476"> <span style="font-size:16px;"><br /> </span> </p> <p> <br /> </p> <p class="ql-long-24357476"> <span style="font-size:16px;"></span> </p>
©️2021 CSDN 皮肤主题: 代码科技 设计师:Amelia_0503 返回首页
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、C币套餐、付费专栏及课程。

余额充值