https://leetcode.com/problems/lru-cache/
Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get and put.
get(key) - Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1.put(key, value) - Set or insert the value if the key is not already present. When the cache reached its capacity, it should invalidate the least recently used item before inserting a new item.
The cache is initialized with a positive capacity.
Follow up:
Could you do both operations in O(1) time complexity?
Example:
LRUCache cache = new LRUCache( 2 /* capacity */ ); cache.put(1, 1); cache.put(2, 2); cache.get(1); // returns 1 cache.put(3, 3); // evicts key 2 cache.get(2); // returns -1 (not found) cache.put(4, 4); // evicts key 1 cache.get(1); // returns -1 (not found) cache.get(3); // returns 3 cache.get(4); // returns 4
算法思路
ls用来连接页面,pos用来进行查找操作,结合list插入删除方便,unordered_map查找方便;
1、查找的页面不在pos中并且个数小于capacity,直接插入,否则先删除ls尾结点ls.back()和修改对应的pos(先修改再删除)
2、查找的页面在pos中,先将页面在ls中的结点和pos中的位置清除,然后重新插入在ls头部并添加到pos
class LRUCache {
public:
LRUCache(int capacity):capacity(capacity) {}
int get(int key) {
if(pos.find(key)!=pos.end()){
put(key,pos[key]->second);
return pos[key]->second;
}
return -1;
}
void put(int key, int value) {
if(pos.find(key)!=pos.end()){
ls.erase(pos[key]);
}else if(ls.size()>=capacity){
pos.erase(ls.back().first);
ls.pop_back();
}
ls.push_front(make_pair(key,value));
pos[key]=ls.begin();
}
private:
int capacity;
list<pair<int,int>> ls; //key--value
unordered_map<int,list<pair<int,int>>::iterator> pos; //key--position
};
/**
* Your LRUCache object will be instantiated and called as such:
* LRUCache* obj = new LRUCache(capacity);
* int param_1 = obj->get(key);
* obj->put(key,value);
*/
参考资料
https://blog.csdn.net/juzihongle1/article/details/77930820

791

被折叠的 条评论
为什么被折叠?



