1 要你做一个分布式日志系统,你打算怎么做?
elk
2 分库分表后,需要统计多表数据,有什么好的办法吗?
- 额外增加统计表,专门保存计数字段
- es等聚合查询工具
3 es有哪些数据类型?
字符串类型、整数类型、浮点类型、date类型、binary类型、array类型、object类型、ip类型
4 es如何增删改查
5 使用es的优势是什么?谈谈es的使用场景
-
ES是一个分布式的restful风格的搜索和数据分析引擎
(1)查询:ES允许执行和合并多种类型的搜索:结构化、非结构化、地理位置、度量指标-搜索方式随心而变。
(2)分析:找到与查询最匹配的十个文档是一回事。但是如果面对的是一个十亿行日志,该如何处理呢?
ES聚合让您能够从大处着眼,探索数据的趋势和模式。
(3)速度:ES很快
(4)可扩展性:可以在笔记本上运行,也可以在承载了PB级数据的成百上千台服务器上运行。
(5)弹性:ES运行在一个分布式的环境中,从设计之初就考虑到了这一点。
(6)灵活性:具备多个案例场景。数字、文本、地理位置、结构化、非结构化。所有的数据类型都欢迎。
(7)HADOOP & SPARK:es+hadoop -
Elasticsearch是一个高度可伸缩的开源全文搜索和分析引擎。它允许您快速和接近实时地存储、搜索和分析大量数据。
这里有一些使用Elasticsearch的用例:
(1)你经营一个网上商店,你允许你的顾客搜索你卖的产品。在这种情况下,您可以使用Elasticsearch来存储整个产品目录和库存,并为它们提供搜索和自动完成建议。
(2)你希望收集日志或事务数据,并希望分析和挖掘这些数据,以查找趋势、统计、汇总或异常。在这种情况下,你可以使用loghide (Elasticsearch/ loghide /Kibana堆栈的一部分)来收集、聚合和解析数据,然后让loghide将这些数据输入到Elasticsearch中。一旦数据在Elasticsearch中,你就可以运行搜索和聚合来挖掘你感兴趣的任何信息。
(3)你运行一个价格警报平台,允许精通价格的客户指定如下规则:“我有兴趣购买特定的电子设备,如果下个月任何供应商的产品价格低于X美元,我希望得到通知”。在这种情况下,你可以抓取供应商的价格,将它们推入到Elasticsearch中,并使用其反向搜索(Percolator)功能来匹配价格走势与客户查询,并最终在找到匹配后将警报推送给客户。
(4)你有分析/业务智能需求,并希望快速调查、分析、可视化,并对大量数据提出特别问题(想想数百万或数十亿的记录)。在这种情况下,你可以使用Elasticsearch来存储数据,然后使用Kibana (Elasticsearch/ loghide /Kibana堆栈的一部分)来构建自定义仪表板,以可视化对您来说很重要的数据的各个方面。此外,还可以使用Elasticsearch聚合功能对数据执行复杂的业务智能查询。
6 ElasticSearch中的分片是什么?
大多数环境中,每个节点都在单独的盒子或虚拟机上运行
索引:在es中,索引是文档的集合。
分片:es是一个分布式搜索引擎,所以索引通常被分割成分布在多个节点上的被称为分片的元素
7 ElasticSearch中的集群、节点、索引、文档、类型是什么?
集群是一个或多个节点(服务器)的集合,他们共同保存您的整个数据,并提供跨所有节点的联合索引和搜索功能。群集由唯一名称标识,默认情况下为“elasticsearch”。此名称很重要,因为如果节点设置为按名称加入群集,则该节点只能是群集的一部分。节点是属于集群一部分的单个服务器。它存储数据并参与群集索引和搜索功能。
索引就像关系数据库中的“数据库”。它有一个定义多种类型的映射。索引是逻辑名称空间,映射到一个或多个主分片,并且可以有零个或多个副本分片。 MySQL =>数据库ElasticSearch =>索引文档类似于关系数据库中的一行。不同之处在于索引中的每个文档可以具有不同的结构(字段),但是对于通用字段应该具有相同的数据类型。 MySQL => Databases => Tables => Columns / Rows ElasticSearch => Indices => Types =>具有属性的文档
类型是索引的逻辑类别/分区,其语义完全取决于用户。
8 你用es做过啥?
做全文检索,在商城系统中,将经常查询的商品的某些字段,如商品名称、描述、价格还有ID字段存入我们索引库,提高查询速度。
9 简单介绍es的index
index索引:是es 存储数据的基本单位(一个索引类似mysql的一张表)
type:一个index里有多个type()

783

被折叠的 条评论
为什么被折叠?



