Ardiente
码龄7年
关注
提问 私信
  • 博客:7,072
    7,072
    总访问量
  • 12
    原创
  • 577,158
    排名
  • 14
    粉丝
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:上海市
  • 加入CSDN时间: 2018-03-28
博客简介:

Ardiente的博客

博客描述:
Just For Fun
查看详细资料
个人成就
  • 获得9次点赞
  • 内容获得2次评论
  • 获得15次收藏
创作历程
  • 12篇
    2018年
成就勋章
TA的专栏
  • 数学
    12篇
兴趣领域 设置
  • 人工智能
    机器学习深度学习神经网络自然语言处理tensorflowpytorchnlp数据分析
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

麻省理工大学线性代数导论笔记 - Lecture 12 图和网络

学习视频来源:麻省理工公开课_线性代数导论 讲师:Gilbert Stranghttp://open.163.com/special/opencourse/daishu.htmlLecture 12 图和网络今天我们进一步讨论(老师认为)在applied math 应用数学中最重要的模型 ——graph 图。我们画出一个图,写出对应的矩阵,这便是矩阵产生的重要来源。 一个图包括nodes ...
原创
发布博客 2018.09.24 ·
760 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

麻省理工大学线性代数导论笔记 - Lecture 11 矩阵空间、秩1矩阵和小世界图

学习视频来源:麻省理工公开课_线性代数导论 讲师:Gilbert Stranghttp://open.163.com/special/opencourse/daishu.html Lecture 11 矩阵空间、秩1矩阵和小世界图我们曾就 n 维空间讲的很详细,同样的思想也能用于矩阵空间——加法和数乘(详见Lecture 6)。因此矩阵空间可以看作是新的向量空间。以3×33×3...
原创
发布博客 2018.07.31 ·
682 阅读 ·
2 点赞 ·
1 评论 ·
2 收藏

麻省理工大学线性代数导论笔记 - Lecture 10 四个基本子空间

Lecture 10 四个基本子空间4 subspaces 四个子空间column space 列空间C(A)C(A)C(A):AAA的列的所有线性组合。row space 行空间R(A)R(A)R(A):AAA的行的所有线性组合。<=> C(AT)C(AT)C(A^T):ATATA^T的列的所有线性组合。null space 零空间N(A)N(A)N(A):Ax=0...
原创
发布博客 2018.07.31 ·
513 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

麻省理工大学线性代数导论笔记 - Lecture 9 线性相关性、基、维数

学习视频来源:麻省理工公开课_线性代数导论 讲师:Gilbert Stranghttp://open.163.com/special/opencourse/daishu.html Lecture 9 线性相关性、基、维数linear independence & linear dependence 线性无关和线性相关向量组(而非矩阵)x1,x2,...xnx1,x2...
原创
发布博客 2018.07.31 ·
380 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

麻省理工大学线性代数导论笔记 - Lecture 8 求解Ax=b:可解性和解的结构

学习视频来源:麻省理工公开课_线性代数导论 讲师:Gilbert Stranghttp://open.163.com/special/opencourse/daishu.htmlLecture 8 求解Ax=b:可解性和解的结构已知矩阵A=⎛⎝⎜⎜1232462682810⎞⎠⎟⎟A=(1222246836810)A= \left( \begin{array}{ccc} 1&2&2...
原创
发布博客 2018.07.31 ·
425 阅读 ·
1 点赞 ·
0 评论 ·
3 收藏

麻省理工大学线性代数导论笔记 - Lecture 7 求解Ax=0:主变量、特殊解

学习视频来源:麻省理工公开课_线性代数导论 讲师:Gilbert Stranghttp://open.163.com/special/opencourse/daishu.htmlLecture 7 求解Ax=0:主变量、特解我们将从定义转向算法,求解Ax=0Ax=0Ax=0的算法是怎样的?这节的主要内容是零空间。已知矩阵A=⎛⎝⎜⎜1232462682810⎞⎠⎟⎟A=(122...
原创
发布博客 2018.07.31 ·
575 阅读 ·
2 点赞 ·
0 评论 ·
2 收藏

麻省理工大学线性代数导论笔记 - Lecture 6 列空间和零空间

Introduction to Linear Algebra 线性代数导论学习视频来源:麻省理工公开课_线性代数导论 讲师:Gilbert Stranghttp://open.163.com/special/opencourse/daishu.htmlLecture 6 列空间和零空间这节我们进一步探讨向量空间。首先看,一个ℝ3R3{\mathbb R^3}空间里有子空间平...
原创
发布博客 2018.07.31 ·
1107 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

麻省理工大学线性代数导论笔记 - Lecture 5 转置-置换-向量空间R

学习视频来源:麻省理工公开课_线性代数导论 讲师:Gilbert Stranghttp://open.163.com/special/opencourse/daishu.htmlLecture 5 置换-转置-向量空间Permutation and Transpose 置换和转置接着上节课的内容,我们来更详细地了解下置换和转置。Permutation 置换置换矩阵...
原创
发布博客 2018.07.29 ·
393 阅读 ·
1 点赞 ·
0 评论 ·
1 收藏

麻省理工大学线性代数导论笔记 - Lecture 4 A的LU分解

学习视频来源:麻省理工公开课_线性代数导论 讲师:Gilbert Stranghttp://open.163.com/special/opencourse/daishu.htmlLecture 4 A的LU分解Basic facts 基础公式inverse of a product 乘积的逆已知AAA和BBB两个矩阵的逆,求ABABAB的逆。易见ABB−1A−1=IA...
原创
发布博客 2018.07.29 ·
564 阅读 ·
2 点赞 ·
0 评论 ·
1 收藏

麻省理工大学线性代数导论笔记 - Lecture 3 乘法与逆矩阵

学习视频来源:麻省理工公开课_线性代数导论 讲师:Gilbert Stranghttp://open.163.com/special/opencourse/daishu.htmlLecture 3 乘法与逆矩阵Matrix multiplication 矩阵乘法basic rules 一般性法则C=A×BC=A×BC=A×B。以c3,4c3,4c_{3,4}为例,...
原创
发布博客 2018.07.29 ·
476 阅读 ·
0 点赞 ·
1 评论 ·
0 收藏

麻省理工大学线性代数导论笔记 - Lecture 2 矩阵消元

学习视频来源:麻省理工公开课_线性代数导论 讲师:Gilbert Strang http://open.163.com/special/opencourse/daishu.html Lecture 2 矩阵消元Elimination 消元法⎧⎩⎨⎪⎪x+2y+z=23x+8y+z=124y+z=2①②③{x+2y+z=2①3x+8y+z=12②4y+z=2③ \begin{...
原创
发布博客 2018.07.29 ·
532 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

麻省理工大学线性代数导论笔记 - Lecture 1 方程组的几何解释

求解线性方程组例一:2×2矩阵{2x−y=0−x+2y=3{2x−y=0−x+2y=3\begin{cases} 2x-y=0\\ -x+2y=3 \end{cases}Row Picture 行图像每一行都是一个方程,求解如2x−y=02x−y=02x-y=0 ,即作出满足此方程的所有点。两条直线的交点就是方程的解。 Column Picture 列图像(重要)x(...
原创
发布博客 2018.07.29 ·
660 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏