各语言的GPU类库

总结一些语言调用GPU的关键词:

 

Java: Aparapi, JavaCL,jCUDA, Deeplearning4j, Rootbeer

C, C++: CUDA, OpenCL (2.x not for NVIDIA), PyTorch, Caffe, TensorFlow, OpenCV(with GPU support), AMP, OpenMP, OpenACC, Thrust

Python: ArrayFire, Numba, cupy (NumPy-like API accelerated with CUDA)

PyTorch, TensorFlow (Keras), PyopenCL, OpenCV(with GPU support).

Julia: CUArrays ( CUDAnative.jlCUDAdrv.jl or CUDArt.jl ), CLArrays.

https://github.com/JuliaGPU 

JavaScript: WebGL (Not for general use), GPU.JS, turbo.js.

Matlab: gpuArray, CudaMat

 

总结:GPU计算最简单易用的当然是Matlab和Julia了,OpenCL使用并不像CUDA那样可靠,比如长循环会出现问题,但是好在支持AMD等所有类型显卡,大部分NVDIA的显卡也是支持openCL的。对于科学计算来说,核心其实在于将内存的数据导入GPU显存,利用GPU的多核来加速计算。

©️2020 CSDN 皮肤主题: 技术黑板 设计师:CSDN官方博客 返回首页