原文,原代码附后
摘要:近年来,假新闻和不实信息对我们的生活产生了破坏性和负面影响。鉴于微博网络作为大多数个人新闻来源的重要性,假新闻现在传播速度更快,影响比以往任何时候都更深远。这使得假新闻的检测成为一个极其重要的挑战。假新闻文章和真正的新闻文章一样,利用多媒体内容操纵用户观点,但传播不实信息。当前假新闻检测方法的一个缺点是无法学习多模态(文本+视觉)信息的共享表示。本文提出一种端到端的网络——多模态变分自编码器(Multimodal Variational Autoencoder, MVAE),使用双模态变分自编码器耦合二进制分类器来完成假新闻检测任务。该模型由编码器、解码器和假新闻检测模块三个主要组件组成。变分自编码器能够通过优化观察数据的边缘似然界来学习概率潜变量模型。然后,假新闻检测器利用双模态变分自编码器获得的多模态表示对帖子进行假新闻分类。该文在两个从流行微博网站上收集的标准假新闻数据集上进行了广泛的实验。实验结果表明,在两个数据集上,所提出模型的准确率和F1分数平均比最先进的方法高出6%和5%。
1 介绍
最近在深度学习领域检测假新闻的工作[26],由于其提取相关特征的能力增强,性能比传统方法有所提高。Jin等人[9]结合视觉、文本和社会上下文特征,使用注意力机制对假新闻进行预测。Wang et al.[26]使用一个额外的事件判别器来学习所有事件之间共享的公共特征,目的是消除
本文提出了一种名为MVAE的多模态变分自编码器,用于检测社交媒体上的假新闻。通过结合文本和视觉信息,MVAE在两个真实数据集上的实验结果显示,其准确率和F1分数比现有最佳模型提高了6%和5%。模型由编码器、解码器和假新闻检测器组成,能学习到多模态共享表示并发现不同模态间的相关性。
订阅专栏 解锁全文

被折叠的 条评论
为什么被折叠?



