ubuntu创建自定义开机服务 lib/systemd/system下创建 .service文件。如/usr/sbin/hikcam.sh。chmod 777 赋予权限。修改配置文件后需要重加载配置。里面写要开机执行的命令。
ROS melodic python3 报错from cv_bridge.boost.cv_bridge_boost import getCvTypeImportError: from cv_bridge.boost.cv_bridge_boost import getCvTypeImportError: dynamic module does not define module export function (PyInit_cv_bridge_boost)
pycharm中导入rospy包 4、点击左下角的加号,添加rospy的路径, 路径为/opt/ros/noetic/lib/python3/dist-packages之后点击ok 就会发现pycharm中import rospy的报错信息消失了。问题描述: import rospy 显示有错误,在终端中import rospy能通过,这种问题说明rospy已经安装成功,但是没有导入到pycharm中。3、点击左下角5个图标中最右面一个图标(show paths for the selected interpreter)
pytorch使用自动混合精度训练的例子 参考:PyTorch的自动混合精度(AMP) - 知乎from torch.cuda.amp import autocast as autocast# 创建model,默认是torch.FloatTensormodel = Net().cuda()optimizer = optim.SGD(model.parameters(), ...)# 在训练最开始之前实例化一个GradScaler对象scaler = GradScaler()for epoch in epochs: ..
libtorch cmake 报错The CUDA compiler identification is unknown -- The CUDA compiler identification is unknownCMake Error at /home/zkst/libtorch/libtorch11.1/share/cmake/Caffe2/public/cuda.cmake:41 (enable_language): No CMAKE_CUDA_COMPILER could be found. Tell CMake where to find the compiler by setting either t.
论文笔记:Spatial-Temporal Person Re-identification 时空行人重识别 论文下载:https://arxiv.org/pdf/1812.03282.pdf文章主结构分三部分:上半部蓝色的视觉特征流,下半部分绿色时空流,和右边的联合度量。视觉特征流:通过PCB网络获取两个特征向量,并计算余弦距离:时空流:...
torchserve使用教程 官方文档地址:https://github.com/pytorch/serve/blob/master/docs/README.mdhttps://github.com/pytorch/serve/blob/master/docs/README.md下载项目:git cloneGitHub - pytorch/serve: Model Serving on PyTorch------Serving quick start注:还需要安装jdk11(1)安装依赖项到源码根目录..
windows下VS2017+libtorch GPU的配置 (1)属性-VC++目录包含目录:用到的opencv和libtorch的include目录库目录:(2)链接器》输入》附加依赖项c10.libc10_cuda.libtorch_cpu.libtorch.libtorch_cuda.libopencv_world440.libcublas.libcuda.libcudadevrt.libcudart.libcudart_static.libOpenCL.lib(3)链接器》所有选项》附加选项...
onnx 转 tensorRT报错解决 报错如下:[12/06/2021-10:20:30] [E] Error[2]: [ltWrapper.cpp::setupHeuristic::327] Error Code 2: Internal Error (Assertion cublasStatus == CUBLAS_STATUS_SUCCESS failed.)[12/06/2021-10:20:30] [E] Error[2]: [builder.cpp::buildSerializedNetwork::417] Error Co.
论文Re-ranking Person Re-identification with k-reciprocal Encoding(person re-id的re-ranking) 1.基础数学知识欧氏距离:余弦距离:马氏距离:(1)方差:(2)协方差协方差:标准差与方差是描述一维数据的,当存在多维数据时,我们通常需要知道每个维数的变量中间是否存在关联。协方差就是衡量多维数据集中,变量之间相关性的统计量。比如一个人身高和体重的关系:如果两个变量之间的协方差为正值,则这两个变量之间存在正相关,即你变大,同时我也变大。例子:X,Y反向运动(2)协方差矩阵: X为是以 n个随机变数组成的列向量:...
git常用功能 Workspace:工作区 Index / Stage:暂存区 Repository:仓库区(或本地仓库) Remote:远程仓库常用功能1.初始化代码库git init执行完命令后将会在该目录下新增一个.git的文件夹
arcface论文阅读记录 1.背景both the softmax loss and the triplet loss(出自facenet) have some drawbacks(缺点)。softmax loss存在的问题:(1)输出矩阵是固定大小的,也就是说识别类型数量是随着n线性增加的。 (2)对于开集分类问题(人脸识别),学习的特征区分度不足。...
skimage transform SimilarityTransform 使用记录 SimilarityTransform 相似变换源码及中文注释:class SimilarityTransform(EuclideanTransform): """2d的相似变换 具有以下形式 X = a0 * x - b0 * y + a1 = = s * x * cos(rotation) - s * y * sin(rotation) + a1 Y = b0 * x + a0 * y + b1 = ...