参考文档:
https://www.docin.com/p-1344399048.html
https://blog.csdn.net/lqzdreamer/article/details/79676305
l
2
,
1
l_{2,1}
l2,1范数:矩阵
X
X
X每一行的
l
2
l_2
l2范数之和
m
i
n
∣
∣
X
∣
∣
2
,
1
min||X||_{2,1}
min∣∣X∣∣2,1 促进行稀疏
L0、L1:保证 稀疏 特性
L1范数是L0范数的凸优化
L2:防止过拟合的情况
核范数:保证 低秩 特性
核范数||W||*是rank()的凸优化
引用博客
【机器学习】范数
最新推荐文章于 2024-12-05 21:17:04 发布

1784

被折叠的 条评论
为什么被折叠?



