常见模型的推导与实现

本文涵盖了线性回归、逻辑回归、朴素贝叶斯、BP神经网络、K-近邻算法、K-means等常见机器学习模型的原理、损失函数、优化方法以及Python实现。同时介绍了pytorch和Keras的基本框架应用。
摘要由CSDN通过智能技术生成

线性回归(Linear)

h_\theta(x)=\theta^Tx=\theta_0x_0+\theta_1x_1+\theta_2x_2+...+\theta_nx_n

损失函数(平方损失函数):J(\theta_0,\theta_1,...,\theta_n)=\frac{1}{2m}\sum_{i=1}^{m}(h_\theta(x^{(i)})-y^{(i)})^2

梯度下降更新参数:\theta_j=\theta_j-\alpha\frac{1}{m}\sum_{i=1}^{m}(h_\theta(x^{(i)})-y^{(i)})·x_j^{(i)}

添加正则化的损失函数:J(\theta_0,\theta_1,...,\theta_n)=\frac{1}{2m}\sum_{i=1}^{m}(h_\theta(x^{(i)})-y^{(i)})^2+\frac{\lambda}{2m}\sum_{j=1}^{n}\theta_j^2

python实现:

def grad_descent(dataMatIn, classLabels):
    dataMatrix = np.mat(dataMatIn)
    labelMat = np.mat(classLabels).transpose()
    n, m = np.shape(dataMatrix)
    weights = np.ones((m, 1)) #(m, 1)
    alpha = 0.001
    maxCycle = 500

    for i in range(maxCycle):
        h = dataMatrix * weights
        weights = weights - alpha * dataMatrix.transpose() * (h - labelMat)

    return weights

 

逻辑回归(LR)

https://blog.csdn.net/moxigandashu/article/details/72779856

通过sigmoid函数映射线性回归函数结果:h_\theta(x)=g(\theta^Tx)=\frac{1}{1+e^{\theta^Tx}}

sigmoid函数求导:g'(z)=g(z)(1-g(z))

对数似然函数: J(\theta)=-\frac{1}{m}[\sum_{i=1}^{m}y^{(i)}logh_\theta(x^{(i)})+(1-y^{(i)})log(1-h_\theta(x^{(i)}))]

<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值