自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

晓晓的天空

好好学习,天天向上!

  • 博客(306)
  • 收藏
  • 关注

原创 Sqoop数据导入到Hive表的最佳实践

Sqoop是一个开源工具,用于在Hadoop生态系统中的数据存储(如HDFS)和关系型数据库之间传输数据。它可以帮助数据工程师和分析师轻松地将结构化数据从关系型数据库导入到Hadoop集群中,以供进一步的数据处理和分析。将数据从关系型数据库导入到Hive表是大数据分析中的关键步骤之一。本文提供了Sqoop数据导入到Hive表的最佳实践,包括详细的步骤、示例代码和最佳建议。希望这些示例代码和详细内容有助于大家更好地理解和实施数据导入操作。

2024-01-22 07:54:48 2042

原创 Sqoop与HBase结合使用:实现强大的数据存储

HBase是一个开源的、分布式的、可扩展的非关系型数据库系统,旨在存储大量结构化和半结构化数据。它是构建在Hadoop上的,具有高可用性、高性能和强大的数据存储和检索能力。HBase通常用于实时数据存储和分析,适用于需要快速读取和写入大规模数据的应用程序。Sqoop与HBase的结合使用可以将关系型数据导入到HBase,从而实现强大的数据存储和分析。本文提供了一个详细的指南,包括HBase的安装和配置、使用Sqoop导入数据到HBase的步骤以及如何查询和管理HBase中的数据。

2024-01-20 06:30:00 2024

原创 使用Sqoop从Oracle数据库导入数据

Sqoop是一个用于在Hadoop生态系统(如HDFS和Hive)与关系型数据库之间传输数据的工具。它使数据工程师能够方便地将结构化数据从关系型数据库导入到Hadoop中,以便进行更多的数据分析和处理。Sqoop支持多种关系型数据库,包括Oracle、MySQL、SQL Server等。使用Sqoop从Oracle数据库导入数据是在大数据环境中进行数据分析的关键步骤之一。本文提供了一个详细的指南,包括安装和配置Sqoop、使用Sqoop导入数据的步骤以及一些常见的配置选项。

2024-01-20 06:00:00 1504

原创 Sqoop故障排除指南:处理错误和问题

Sqoop故障排除是确保数据传输顺利进行的关键任务。了解并解决常见问题可以提高工作效率并减少数据传输中的不必要的延迟。希望本文提供的示例代码和详细内容有助于大家更好地理解和解决Sqoop故障。

2024-01-19 21:47:02 1172

原创 Sqoop数据传输中的常见挑战及其解决方法

Sqoop是一个非常强大的数据传输工具,但在实际使用中可能会面临一些挑战。了解这些挑战并采取相应的解决方法是确保数据传输顺利进行的关键。希望本文提供的示例代码和详细内容有助于更好地克服Sqoop数据传输中的常见挑战。

2024-01-19 21:43:11 866

原创 Sqoop安全性:确保安全的数据传输

确保Sqoop数据传输的安全性是大数据处理中不可忽视的一部分。Sqoop提供了多种安全性措施,包括SSL加密、Kerberos认证、访问控制和日志审计等,以确保数据在传输过程中的安全性和完整性。希望本文提供的示例代码和详细内容有助于大家更好地了解和应用Sqoop的安全性特性。

2024-01-16 06:30:00 1136

原创 将Sqoop与Hive集成无缝的数据分析

将Sqoop与Hive集成是在大数据环境中实现无缝数据分析的关键一步。Sqoop可以轻松地将关系型数据库中的数据导入到Hive中,以便进行高级数据分析和查询。希望本文提供的示例代码和详细内容有助于大家更好地理解和应用Sqoop与Hive的集成技术。

2024-01-16 06:00:00 1288

原创 Sqoop作业调度:自动化数据传输任务

自动化数据传输任务是在大数据环境中确保数据一致性和效率的关键。Sqoop作业调度是实现自动化数据传输任务的一种强大方式,通过与调度工具(如Apache Oozie)结合使用,可以轻松地计划和执行Sqoop作业。希望本文提供的示例代码和详细内容有助于大家更好地理解和应用Sqoop作业调度,以实现自动化的数据传输任务。

2024-01-15 20:00:00 1213

原创 使用Sqoop的并行处理:扩展数据传输

Sqoop允许自定义用于分区的列,以更好地满足需求。在这个示例中,选项将数据根据自定义列的值进行分区,以提高数据导出的效率。Sqoop的并行处理能力是在大数据环境中高效传输数据的关键。通过合理设置并行度、分区数据和应用高级技巧,可以显著提高Sqoop任务的性能,从而更高效地进行数据传输。希望本文提供的示例代码和详细说明有助于大家更好地理解Sqoop的并行处理技术,并在实际应用中取得更好的性能表现。

2024-01-15 19:30:00 1349

原创 Sqoop与其他数据采集工具的比较分析

在本文中,对Sqoop与其他数据采集工具进行了全面的比较分析,包括Flume、Kafka Connect、Spark和Flink等。每个工具都有其自身的特点和适用场景,根据项目需求和数据采集要求选择合适的工具非常重要。希望本文提供的示例代码和详细内容有助于大家更好地理解Sqoop与其他工具之间的差异和优劣势,以便在数据采集和数据处理过程中做出明智的决策。

2024-01-14 06:30:00 1571

原创 Sqoop的增量数据加载策略与示例

Sqoop的增量加载策略是数据工程师和数据科学家在处理大规模数据时不可或缺的工具。通过合理选择增量加载策略、使用水印列、多次增量加载和性能优化技巧,可以高效地导入数据并确保数据一致性。希望本文提供的示例代码和详细说明有助于大家更好地理解Sqoop的增量加载功能,并在实际应用中取得更好的性能表现。

2024-01-14 06:00:00 1757

原创 Sqoop性能优化:高效数据传输的技巧

Sqoop性能优化是大数据处理中至关重要的一部分。通过合理设置并行度、压缩数据、选择数据列、数据分片和大事务拆分,可以显著提高Sqoop任务的性能,从而更高效地进行数据传输。希望本文提供的示例代码和详细说明有助于大家更好地理解Sqoop性能优化技巧,并在实际应用中取得更好的性能表现。

2024-01-13 06:30:00 832

原创 使用Sqoop将数据从Hadoop导出到关系型数据库

Sqoop允许您定义数据的映射和转换规则,以确保数据的一致性和正确性。您可以使用--columns选项指定要导出的列,并使用选项指定数据源中的字段分隔符。在本博客文章中,我们详细介绍了如何使用Sqoop将数据从Hadoop导出到关系型数据库。我们覆盖了安装、配置、基本导出步骤以及一些高级主题,包括参数化导出、增量导出和工作流程集成。希望这些示例代码和详细说明能够帮助您更好地使用Sqoop工具,并实现您的数据导出需求。如果您有任何问题或需要进一步的帮助,请随时留言,我将尽力提供支持。

2024-01-13 06:00:00 1165

原创 使用Sqoop将数据导入Hadoop的详细教程

Sqoop默认使用逗号作为字段分隔符。如果数据中包含逗号,可能会导致数据解析错误。使用选项可以指定自定义字段分隔符。通过完成本教程,已经学会了如何使用Sqoop将数据从关系型数据库导入到Hadoop的HDFS中。这是大数据处理中的一个重要步骤,可以在Hadoop集群上进行更深入的数据分析和处理。Sqoop提供了许多其他选项和参数,以满足不同情况下的需求,例如增量导入、并行处理等等。

2024-01-12 06:30:00 1505

原创 Sqoop入门指南:安装和配置

通过完成上述步骤,已经成功地安装和配置了Sqoop。现在,可以开始使用Sqoop来传输数据,包括从关系型数据库导入数据到Hadoop集群,或从Hadoop集群导出数据到关系型数据库。

2024-01-12 06:00:00 708

原创 Spark与云存储的集成:S3、Azure Blob Storage

通过集成Spark与云存储服务(如S3和Azure Blob Storage),可以实现高效的数据处理和存储。本文提供了详细的步骤和示例代码,以顺利进行集成。同时,也强调了性能优化的重要性,以确保在云环境中获得良好的性能表现。

2024-01-11 06:30:00 1184

原创 Spark与Kafka的集成与流数据处理

通过集成Spark与Kafka,可以充分利用这两个强大的工具来进行流数据处理。本文深入介绍了如何集成Spark与Kafka,并提供了示例代码,以帮助大家更好地理解这一过程。同时,我们也提供了性能优化的建议,以确保在集成过程中获得良好的性能表现。

2024-01-11 06:00:00 1790

原创 Spark与Elasticsearch的集成与全文搜索

通过集成Spark与Elasticsearch,可以充分利用这两个强大的工具来进行全文搜索和数据分析。本文深入介绍了如何集成Spark与Elasticsearch,并提供了示例代码,以帮助大家更好地理解这一过程。同时,也提供了性能优化的建议,以确保在集成过程中获得良好的性能表现。

2024-01-10 06:30:00 1394

原创 Spark与Cassandra的集成与数据存储

通过集成Spark与Cassandra,可以充分利用这两个强大的工具来处理和存储大规模数据。本文深入介绍了如何集成Spark与Cassandra,并提供了示例代码,以帮助大家更好地理解这一过程。同时,也提供了性能优化的建议,以确保在集成过程中获得良好的性能表现。

2024-01-10 06:00:00 1176

原创 Spark与HBase的集成与数据访问

通过集成Spark与HBase,可以充分利用这两个强大的工具来处理和分析大规模数据。本文深入介绍了如何集成Spark与HBase,并提供了示例代码,以帮助大家更好地理解这一过程。同时,也提供了性能优化的建议,以确保在集成过程中获得良好的性能表现。

2024-01-09 10:28:06 1721

原创 Spark与Hive的集成与互操作

Apache Spark和Apache Hive是强大的大数据工具,通过它们的集成和互操作,可以更好地处理和分析大规模数据。本文介绍了如何在Spark中集成和与Hive进行互操作,包括使用Hive数据仓库、使用Hive表、将Spark数据保存到Hive表、使用Hive UDF以及性能优化的建议。希望本文能够帮助大家更好地利用这两个工具来处理和分析数据。

2024-01-09 10:27:32 1767

原创 Spark回归分析与特征工程

回归分析是数据科学中的一个重要任务,而Spark提供了丰富的工具和库,用于进行回归分析和特征工程。本文深入介绍了回归分析的基本步骤,包括模型选择与调优、数据准备与预处理、模型解释与可视化等方面。希望本文能够帮助大家更好地理解和应用Spark来解决回归分析问题。

2024-01-07 06:30:00 1374

原创 Spark中的二分类与多分类问题的解决

解决二分类和多分类问题是数据科学中的重要任务,而Spark提供了强大的工具和库来处理这些问题。本文深入介绍了解决分类问题的基本步骤,包括数据准备、模型选择、性能评估和类别不平衡问题的处理。希望本文能够帮助大家更好地理解和应用Spark来解决分类问题。

2024-01-07 06:00:00 602

原创 Spark MLlib简介与机器学习流程

Spark MLlib是Apache Spark的机器学习库,旨在简化大规模数据的机器学习任务。它提供了一系列机器学习算法和工具,可用于分类、回归、聚类、推荐和降维等任务。Spark MLlib是Spark的一个扩展库,允许在分布式集群上执行机器学习任务,从而能够处理大规模数据。Spark MLlib是一个强大的机器学习库,可以在大规模数据处理环境中进行机器学习任务。本文介绍了机器学习流程的基本步骤,并提供了示例代码演示了如何使用Spark MLlib进行线性回归。

2024-01-06 06:30:00 1622

原创 Spark Streaming的容错性与高可用性

Spark Streaming具有卓越的容错性机制,能够应对故障和数据丢失。此外,采取一些额外的高可用性措施可以确保实时数据处理应用程序的高可用性。希望本文帮助大家更好地理解Spark Streaming的容错性和高可用性,以及如何实现它们。

2024-01-06 06:00:00 550

原创 Spark Streaming与数据源连接:Kinesis、Flume等

Apache Spark Streaming是Apache Spark的一个模块,用于实时数据处理和分析。它可以从各种数据源接收实时数据流,并将数据流划分为小的时间窗口,以便进行批处理处理。Spark Streaming使用DStream(离散流)来表示数据流,允许您使用Spark的API进行实时数据处理。当使用Spark Streaming连接不同数据源时,需要考虑不同数据源的配置和特性。

2024-01-05 06:30:00 1095

原创 使用Kafka与Spark Streaming进行流数据集成

Apache Kafka是一个高吞吐量、分布式、持久性的消息系统,用于发布和订阅流数据。它具有以下关键特性:分布式:Kafka可以在多个服务器上运行,以实现高可用性和扩展性。持久性:Kafka可以持久化数据,确保数据不会丢失。发布-订阅模型:Kafka使用发布-订阅模型,允许生产者发布消息,而消费者订阅感兴趣的消息主题。高吞吐量:Kafka能够处理大量消息,适用于实时数据流。Spark Streaming是Apache Spark的一个模块,用于实时数据处理和分析。

2024-01-05 06:00:00 1226

原创 Spark Streaming的DStream与窗口操作

DStream是Spark Streaming的核心抽象,它代表了连续的数据流,可以从各种数据源创建,如Kafka、Flume、Socket等。DStream可以看作是一个高级别的抽象,它将实时数据流划分为一系列小的批次(micro-batch),每个批次包含一段时间内的数据。DStream上可以应用各种转换操作,以进行实时数据处理。窗口操作是Spark Streaming的一个重要特性,它能够对实时数据流中的数据进行时间窗口内的处理和分析。

2024-01-04 06:30:00 1788

原创 实时数据处理概述与Spark Streaming简介

实时数据处理是一种处理流式数据的方法,它使组织能够在数据产生后立即对其进行分析和操作。这与传统的批处理不同,批处理通常是周期性的、离线的,需要等待一段时间才能获得处理结果。实时数据处理的典型应用包括:实时监控:监控网络流量、服务器性能、交易活动等。实时分析:实时计算统计信息、趋势分析、异常检测等。实时决策:根据实时数据做出决策,例如广告投放、库存管理等。Spark Streaming是Apache Spark的一个模块,用于实时数据处理和流处理。

2024-01-04 06:00:00 1464

原创 性能优化:Spark SQL中的谓词下推和列式存储

谓词下推和列式存储是Spark SQL中的两个重要性能优化技术,它们可以显著提高查询性能和降低资源消耗。本文深入探讨了这两个技术的原理和实际应用,以及性能优化的案例和注意事项。希望本文能够帮助大家更好地理解和应用谓词下推和列式存储,以提高Spark SQL查询性能,从而更有效地处理和分析大规模数据。

2024-01-03 06:30:00 1528

原创 使用UDF扩展Spark SQL

UDF是一种用户自定义的函数,可以在Spark SQL查询中使用自定义的计算逻辑。UDF可以用于扩展Spark SQL的功能,使其能够执行自定义操作,无论是数据清洗、数据转换还是其他复杂的计算。UDF通常由用户编写的代码组成,并且可以在SQL查询中像内置函数一样使用。在使用UDF之前,首先需要定义UDF。在Spark中,可以使用Scala、Java或Python来编写UDF。下面是一个使用Python定义UDF的示例。假设有一个包含员工姓名的表,并且希望将所有的名字转换为大写。

2024-01-03 06:00:00 1114

原创 Spark SQL中的聚合与窗口函数

Spark SQL中的聚合与窗口函数是强大的工具,用于分析和处理结构化数据。本文深入探讨了聚合函数、分组操作、窗口函数以及实际用例,并提供了性能优化的建议。希望本文能够帮助大家更好地理解和应用Spark SQL中的聚合与窗口函数,以解决复杂的数据分析问题。

2024-01-02 06:30:00 1290

原创 Spark中使用DataFrame进行数据转换和操作

DataFrame是一种分布式数据集,它以表格形式组织数据,每一列都有名称和数据类型。DataFrame是强类型的,这意味着它可以在编译时捕获错误,提供更好的类型安全性。可以将DataFrame视为关系型数据库表或Excel表格,但它具有分布式计算的能力。Spark中的DataFrame是一个强大的工具,用于处理结构化数据,并提供了丰富的数据转换和操作功能。本文深入探讨了DataFrame的基本概念、数据加载、数据筛选、列选择、数据聚合、数据连接、窗口函数、数据保存以及性能优化和注意事项等方面的内容。

2024-01-02 06:00:00 782

原创 Spark中的数据加载与保存

Spark中的数据加载与保存是数据处理流程的重要步骤。本文深入探讨了数据加载与保存的基本概念、常见操作以及性能优化和注意事项。希望本文能够帮助大家更好地理解和使用Spark中的数据加载与保存功能,并在数据处理和分析任务中取得更好的性能和效果。

2024-01-01 06:30:00 792

原创 Spark SQL简介与基本用法

Spark SQL是Apache Spark的一个模块,用于处理结构化数据。它提供了一个高性能、分布式的SQL查询引擎,可以轻松处理各种数据源,包括结构化数据、半结构化数据和非结构化数据。Spark SQL的主要特点包括:支持SQL查询:您可以使用标准的SQL查询语言来查询和分析数据,无需编写复杂的代码。数据集和数据框架:Spark SQL引入了数据集(Dataset)和数据框架(DataFrame)的概念,这些抽象简化了数据处理操作。

2024-01-01 06:00:00 1583

原创 Spark的错误处理与调试技巧

了解Spark的错误处理与调试技巧以及合理使用监控和性能分析工具是构建高效分布式应用程序的关键。本文深入探讨了常见的Spark错误类型、调试工具、技巧以及最佳实践,并提供了示例代码来帮助更好地理解和解决问题。希望本文能够帮助大家更好地调试和优化Spark应用程序,顺利解决开发和部署中可能遇到的各种问题。

2023-12-31 06:30:00 1303

原创 Spark任务调度与数据本地性

了解Spark任务调度与数据本地性是构建高效分布式应用程序的关键。本文深入探讨了任务调度的流程、数据本地性的重要性,并提供了示例代码来帮助大家更好地理解这些概念。希望本文帮助大家更好地理解Spark任务调度与数据本地性的概念,并为您构建和优化Spark应用程序提供了一些有用的指导。

2023-12-31 06:00:00 1094

原创 Spark作业的调度与执行流程

了解Spark作业的调度与执行流程是构建高效分布式应用程序的关键。本文深入探讨了Spark作业的组成部分、调度过程以及示例代码来帮助大家更好地理解这些概念。希望本文帮助大家更好地理解Spark作业的调度与执行流程,为构建和优化Spark应用程序提供了一些有用的指导。

2023-12-30 06:30:00 2038

原创 Spark应用程序的结构与驱动程序

本文深入探讨了Spark应用程序的结构和驱动程序,并提供了一个完整的示例来演示如何编写一个Spark驱动程序。还讨论了性能优化、部署模式、监控和调优以及流处理作业等关键概念。希望本文帮助大家更好地理解Spark应用程序的构建和执行,以及如何应对不同的部署和调优需求。

2023-12-30 06:00:00 2070

原创 Spark编程范例:Word Count示例解析

Word Count示例是一个经典的文本处理任务,其目标是统计给定文本中每个单词出现的次数。这个任务通常用于演示分布式计算框架的基本功能,因为它相对简单,但涵盖了数据的加载、转换和聚合等关键概念。RDD(弹性分布式数据集):Spark的核心数据抽象,用于表示分布式数据集。转换操作:如map和,用于对RDD进行变换和操作。持久化(persist):用于将中间结果缓存到内存中,以提高性能。Spark应用程序的执行流程:包括数据的加载、转换和行动操作。

2023-12-29 06:30:00 1086

ChatGPT想要输入的文本太长怎么办.rar

ChatGPT 的 5 种应⽤⽅式 1. 输⼊少,输出多:例如,你想写⼀本⺠国穿越⼩说。然后等着 ChatGPT 把⼩说写出来。 2. 输⼊多,输出少:例如,给 ChatGPT 提供 5 条评论作为例⼦。然后让 ChatGPT 按照前 5 条的例⼦分类接下来的 3 条评论。你使⽤ ChatGPT 不是为了寻找创意,⽽是将其作为⼀个⼤量信息处理⼯具。处理规则复杂,难以⼿⼯完成,只能由AI推断。 3. ⾃⼰拆分任务:但是 token 不够⽤。为了解决这个问题,你可以提前把⼀个⼤任务拆分成多个⼩任务。然后每个⼩任务调⽤⼀次。最后再拼接起来。例如,要做⼀个超⼤⽂档的摘要任务。你可以将⽂档切成⼩块,然后让 ChatGPT 为每个⼩块做摘要。 4. 使⽤⼯具:让 ChatGPT 使⽤⼯具。也就是说,ChatGPT 输出的⽂本实际上是给你的指令。例如,ChatGPT说这题我不会,我想 Google ⼀下这个关键字。然后你按照ChatGPT 的指令,去 Google 搜索,再把结果作为下⼀次的聊天内容喂回去。 5. 让 ChatGPT分解任务:你帮助它分解任务毕竟是基于规则的算法,对问题的适应性有限。

2023-06-11

chatGPT 在股票市场辅助应用.rar

该报告研究ChatGPT和其他大型语言模型在使用对新闻标题的情绪分析来预测股市回报方面的潜力。我们使用ChatGPT来指示一个给定的标题对公司的股价是好的、坏的还是无关的消息。然后,我们计算了一个数值分数,并记录了这些“ChatGPT分数”与随后的每日股票市场回报之间的正相关关系。此外,ChatGPT也优于传统的情绪分析方法。我们发现,更基本的模型,如GPT-1、GPT-2和BERT,不能准确地预测收益,这表明收益可预测性是复杂模型的一种新兴能力。我们的研究结果表明,将高级语言模型纳入投资决策过程中,可以产生更准确的预测,并提高投资决策过程的性能定量交易策略。

2023-06-11

2023第一季度AIGC人才供需报告.rar

从AlphaGo问世,到自动驾驶技术逐渐成熟,再到如今生成式AI爆火出圈,随着AI技术的不断演进,衍生出越来越多的岗位,也为职场人未来的选择提供了更多可能性。本报告内容基于主要基于拉勾招聘平台2022年及2023年第一季度,130万+企业及400万+AIGC人才的招聘和求职的完整数据,以及1735名数字科技人才的调研结果,分析AIGC人才的职位供需,洞察AIGC人才的求职现状。拉勾招聘数据显示,2023年1-3月,AIGC领域的发布职位量逐月攀升,3月达到峰值,环比2月增长42%,自2022年11月OpenAI推出ChatGPT以来,AIGC领域人才招聘需求再创新高。AI文案工具、ChatGPT聊天机器人以及AI翻译工具成为职场常用辅助工具TOP3,其中超四成数字科技人才在职场中选择应用ChatGPT,可见ChatGPT的功能深受职场人青睐。

2023-06-11

人工智能十年展望(七):微软Copilot发布,AIGC应用大幕拉开.rar

GPT-4融合 Microsoft Graph,Copilot 深度赋能个人应用场景。Copilot 搭载了 OpenAl 最新的 GPT-4 大语言模型,并结合 Microsoft Graph 和 Microsoft 365 各生产力工具中的个人数据实现语言指令和模型回复的调优,用户在 Word、Excel、Powerpoint 等应用端通过自然语言指令即可调用模型实现创成式 Al 文字、表格、演示文稿等内容生成及修正。 Copilot in Word: 简短指令实现文稿的快速生成和修改,基于简短自然语言指令,实现文稿生成和修改润色。我们认为文字生成是创成式 AI 相对成熟的应用场景,在 Copilot 中根据简短的指令即能够快速生成草稿,在此基础上可以通过交互式的指令实现文稿的内容修正(如添加、归纳) 和风格切换(如“专业语气”、“热情语气”等)。借助 Copilot 亦能够实现 Office 不同套件的打通,如基于 Onenote 要点实现文稿生成在 Word 中添加 Excel 数据分析等内容。

2023-06-07

人工智能十年展望(六):ChatGPT兴起,创成式AI能否重塑工具软件底层逻辑?.rar

ChatGPT 掀起全球 AI 热潮,通往 AGI 的道路亦或将近。ChatGPT (Chat Generative Pre-Trained Transformer) 是由 OpenAl 开发的人工智能聊天机器人程序,其基于 GPT-3.5 大模型,能够完成相对复杂的语言处理任务,包括人机对话、自动文本生成、自动摘要、编写代码等,在 2022 年 11 月推出,上线两个月后用户数量即达到 1 亿规模,在全球范围内掀起又轮 AI 热潮。ChatGPT 的火爆让业界意识到 AI 行业在通往 AGI (通用人工智能)的路途上更近一步,进而也引发了世界范围内对 AGI 未来会如何重塑各行各业的讨论与畅想。 ChatGPT 掀起全球 AI 热潮,通往 AGI 的道路亦或将近。ChatGPT (Chat Generative Pre-Trained Transformer) 是由 OpenAl 开发的人工智能聊天机器人程序,其基于 GPT-3.5 大模型,能够完成相对复杂的语言处理任务,包括人机对话、自动文本生成、自动摘要、编写代码等。

2023-06-07

人工智能十年展望(五):从ChatGPT到通用智能,新长征上的新变化.rar

ChatGPT 和 AIGC 持续升温的本质是背后的 AI 大模型进入新范式。ChatGPT 是基于 GPT3.5 的 ntructGPT,基于人类反馈的强化学习 (RLHF) 训练的语言类大模型。本文梳理了ChatGPT 背后的技术演进与应用落地节奏,并对未来 AI 行业的格局加以展望。 全社会的数字化是人工智能的重要目标,同时也意味着大量的建模需求。随着数字信息世果物理世界融合,产生的数据量是以前的成千上万倍,监控和管理这些信息牵制了大量人力,未来需要大量的 A 模型来处理这些信息。而大量的模型需求需要较高的 A 模型生产效率、较低的算法边际成本。 虽然距离完全达到人类智能水平的 AI,还有很长一段路要走。但近几年在长尾场景等问题导致了对更通用的人工智能的刚需,在国内夕巨头纷纷投入大量资源攻克通用人工智能难题的推动下,通用的语言模型、视觉模型甚至多模态模型也开始逐渐取得突破。

2023-06-07

人工智能十年展望(四):决策AI,企业数字化转型底层驱动力.rar

AI 技术正经历从感知 A 到决策 A 演变的关键节点。感知 A 与决策 A是通用人工智能的两大基石,感知 AI 是自环境中获取信息,完成提取要素、分析、得出结果的过程,是对环境的静态感知,计算机视觉是典型代表,目前发展相对成熟,决策 AI 则泛指动作控制、风险管理、运营规划、营销等复杂的决策,即获取来自环境的信息后,行为和环境产生动态交互,因此行为具有一定不确定性且更为复杂。在大量的实际应用场景中,以强化学习为主的决策 AI能力能够突破大规模落地的瓶颈,因此,Al 技术正进入从感知到决策 A的重心演变。 与技术发展阶段对应,企业数字化转型经历两大阶段,阶段二决策 AI 技术是关键。传统企业数字化转型经历两大阶段: 阶段一,企业进行业务数字化、流程线上化的迁移,数据逐步积累,此阶段感知 AI 是关键,以视觉 AI 为典型代表,已在零售、银行等领域较大规模落地:阶段二,企业基于成熟的数据积累,利用决策 AI 模型通过大数据提取规律,代替业务专家做决策,例如,互联网巨头基于用户点击、购买行为刻画人物画像并进行精准营销。数字化转型过程中,决策环节所能创造的商业价值巨大。

2023-06-07

人工智能十年展望(三):AI视角下的自动驾驶行业全解析.rar

算法对于自动驾驶的效果至关重要。自动驾驶作为人工智能技术重要应用场景之一,其技术体系由算法、算力、数据三部分构成,其中算法的有效性影响自动驾驶的每一个环节,从感知环节的特征提取到神经网络的决策,都需要依赖算法改进来提高障碍物检测准确性和复杂场景下的决策能力。典型的自动驾驶技术架构包括感知(定位)、决策、执行三部分: 感知是自动驾驶车辆的“眼睛”,通过各类传感器对行驶路径进行识别,定位和追踪车辆周围物体以获取车辆环境信息,并融合、处理环境信息及车内信息。用于自动驾驶感知的传感器主要包括激光雷达、毫米波雷达、超声波雷达及视觉传感器,其中视觉传感器又包括单目和多目彩色摄像头。 决策是自动驾驶车辆的“大脑”,对道路拓扑结构信息、实时交通信息、交通参与者信息和车辆自身状态等感知数据进行进一步分析,做出决策和预测后给出车辆控制策略并发出相应指令,决策系统主要包括车辆行为决策模块及轨迹规划模块。 执行是自动驾驶车辆的“手脚”。接收决策系统给出的指令,通过车辆稳定系统 ESC、线控制动 eBooster、线控转向 EPS 等执行机构精确地控制加速程度、制动程度、转向幅度、灯光控制等驾驶动作。

2023-06-07

人工智能十年展望(二):边际成本决定竞争力,算法龙头主导格局优化.rar

目前 AI项目落地还停留在“手工作坊”阶段,存在重复造轮子情况,边际成本高。目前国内大部分AI项目的落地是以项目制的形式,主要包括需求阶段、打光阶段、数据阶段、算法设计阶段、训练评估阶段、部署阶段和运维阶段。其中,数据阶段和训练评估阶段往往需要多次循环,专家驻场收集数据并训练模型,发现指标无法满足需求后再重新进入数据阶段,一个项目往往需要专家团队驻场数月完成。 碎片化的本质原因在于现阶段AI模型的通用性低,模型生产还停留在“手工作坊的时代,单个模型只适用特定任务。即使同样的算法在不同场景落地,也会演化出非常不同的版本,会给技术积累产生很大的挑战。例如,在工厂场景下检测零部件、在医疗图像中检测病理特征,虽然本质上都是检测,但是两种情形下要获得准确结果都需要大量数据、实验和参数,一旦场景和任务发生变化,就需要重新收集、标注数据、训练模型。由于客户需求多样,以至于几乎每个项目都要重复进行这一流程,研发流程难以复用,重度依赖人力,边际成本很高。

2023-06-07

人工智能十年展望(一):底层模拟人脑,算力决定上限.rar

AI技术中长期对社会的潜在影响深远,影响几乎所有行业。本文介绍了以深度学习为代表的人工智能理论的基本原理,并指出了由于目前的人工智能具备坚实的数学基础、神经学基础,未来随着底层算力的不断增长,人工智能影响边界将会不断扩宽,行业的发展潜力目前仍处在被市场低估状态。 深度学习从底层模拟人脑神经元的主要工作机制。智能很大程度是广义计算问题,人工神经网络尽管无法做到完全“复制”人脑,但已经能较好地模拟其主要底层机制,因为神经元可近似为基于阅值的二进制单元,类似数字电路0/1 机制。 从生物进化的角度看,人的智能是量变到质变的过程。在完成单个神经元主要工作机制模型后,只要网络层数、神经元个数足够多, AI将在某些维度接近甚至超过人脑智能。 此外,从数学角度,万能近似定理论证了深度学习有坚实的数学基础。该定理证明了深度学习数学模型能够以任意精度逼近任意的函数,而人的智能很大程度即广义计算问题,进而深度学习模型能够模拟人脑的绝大部分活动,具备很高的上限。

2023-06-07

万字干货:ChatGPT的工作原理

ChatGPT 能够自动生成一些读起来表面上甚至像人写的文字的东西,这非常了不起,而且出乎意料。但它是如何做到的?为什么它能发挥作用? 首先要解释的是,ChatGPT 从根本上说总是试图对它目前得到的任何文本进行 “合理的延续”,这里的 “合理” 是指 “在看到人们在数十亿个网页上所写的东西之后,人们可能会期望某人写出什么”。 因此,假设我们已经得到了 “人工智能最好的是它能去做 ……” 的文本(“The best thing about AI is its ability to”)。想象一下,扫描数十亿页的人类书写的文本(例如在网络上和数字化书籍中),并找到这个文本的所有实例 —— 然后看到什么词在接下来的时间里出现了多少。 值得注意的是,当 ChatGPT 做一些事情,比如写一篇文章时,它所做的基本上只是反复询问 “鉴于到目前为止的文本,下一个词应该是什么?” —— 而且每次都增加一个词。(更准确地说,正如我将解释的那样,它在添加一个 “标记”,这可能只是一个词的

2023-06-07

十大经典排序算法.pdf

排序算法是数据结构与算法中最基本的算法之一。 排序算法可以分为内部排序和外部排序,内部排序是数据记录在内存中进行排序,而外部排序是因排序的数据很大,一次不能容纳全部的排序记录,在排序过程中需要访问外存。常见的内部排序算法有:插入排序、希尔排序、选择排序、冒泡排序、归并排序、快速排序、堆排序、基数排序等。 关于时间复杂度: 1. 平方阶 (O(n2)) 排序 各类简单排序:直接插入、直接选择和冒泡排序。 2. 线性对数阶 (O(nlog2n)) 排序 快速排序、堆排序和归并排序; 3. O(n1+§)) 排序,§ 是介于 0 和 1 之间的常数。 希尔排序 4. 线性阶 (O(n)) 排序 基数排序,此外还有桶、箱排序。 关于稳定性: 稳定的排序算法:冒泡排序、插入排序、归并排序和基数排序。 不是稳定的排序算法:选择排序、快速排序、希尔排序、堆排序。

2023-03-15

快乐的 Linux 命令行.pdf

现在,大多数的计算机用户只是熟悉图形用户界面(GUI),并且产品供应商和此领域的学者会灌输给用户这样的思想,命令行界面(CLI)是过去使用的一种很恐怖的东西。这就很不幸,因为一个好的命令行界面,是用来和计算机进行交流沟通的非常有效的方式,正像人类社会使用文字互通信息一样。人们说,“图形用户界面让简单的任务更容易完成,而命令行界面使完成复杂的任务成为可能”,到现在这句话仍然很正确。 因为 Linux 是以 Unix 家族的操作系统为模型写成的,所以它分享了 Unix 丰富的命令行工 具。Unix 在 20 世纪 80 年代初显赫一时 (虽然,开发它在更早之前),结果,在普遍地使用图形界面之前,开发了一种广泛的命令行界面。事实上,很多人选择 Linux(而不是其他的系统,比如说 Windows NT)是因为其可以使“完成复杂的任务成为可能”的强大的命令行界面。

2023-03-15

Hive基本概念及常用操作.rar

Hive 是建立在 Hadoop 上的数据仓库基础构架。它提供了一系列的工具,可以用来进行数据提取转化加载(ETL),这是一种可以存储、查询和分析存储在 Hadoop 中的大规模数据的机制。 Hive 定义了简单的类 SQL 查询语言,称为 QL,它允许熟悉 SQL 的用户查询数据。同时, 这个语言也允许熟悉 MapReduce 开发者的开发自定义的 mapper 和 reducer 来处理内建的 mapper 和 reducer 无法完成的复杂的分析工作。 Hive概念及常用操作文件包含Hive的基本概念与架构,以及在平常的工作中常用的一些操作,包括HQL的开发运行,以及优化。

2023-03-05

机器学习人工智能基础知识点.rar

⼈⼯智能:(Artificial intelligence)是研究、开发⽤于模拟、延伸和扩展⼈的智能的理论、⽅法、技术及应⽤系统的⼀⻔新的技术科学。它是⼀个笼统⽽宽泛的概念,⼈⼯智能的最终⽬标是使计算机能够模拟⼈的思维⽅式和⾏为。 机器学习:(Machine learning)是⼈⼯智能的⼦集,是实现⼈⼯智能的⼀种途径,但并不是唯⼀的途径。它是⼀⻔专⻔研究计算机怎样模拟或实现⼈类的学习⾏为,以获取新的知识或技能,重新组织已有的知识结构使之不断改善⾃身的性能的学科。⼤概在上世纪80年代开始蓬勃发展,诞⽣了⼀⼤批数学统计相关的机器学习模型。 在机器学习与人工智能大火的今天,掌握机器学习人工智能基础知识点无论是在工作还是在生活中都是必须的内容。

2023-03-05

Python练习集100题.rar

Python是一种代表简单主义思想的语言。阅读一个良好的Python程序就感觉像是在读英语一样。它使你能够专注于解决问题而不是去搞明白语言本身。Python极其容易上手,因为Python有极其简单的说明文档。 Python是完全面向对象的语言。函数、模块、数字、字符串都是对象。并且完全支持继承、重载、派生、多继承,有益于增强源代码的复用性。Python支持重载运算符和动态类型。相对于Lisp这种传统的函数式编程语言,Python对函数式设计只提供了有限的支持。有两个标准库(functools,itertools)提供了Haskell和Standard ML中久经考验的函数式程序设计工具。 Python练习集100题是整理了Python入门学习需要的练习题。

2023-03-05

MATLAB 常用函数参考.rar

MATLAB 常用函数参考,介绍了在MATLAB的过程中,工具箱中常用的函数,并对每个函数的语法格式和应用进行介绍,让读者了解每个函数的功能与用法,从而领略MATLAB简单易用、处理功能强大等特点。 分别介绍矩阵相关操作函数、数据可视化函数、数据分析函数、概率统计函数、偏微分方程函数、优化函数、图像处理函数、神经网络函数、信号处理函数、控制系统函数、样条函数、小波变换函数、模糊逻辑函数、计算机视觉函数等内容。

2023-03-03

Matlab解线性方程组

MATLAB软件主要面对科学计算、可视化以及交互式程序设计的高科技计算环境。它将数值分析、矩阵计算、科学数据可视化以及非线性动态系统的建模和仿真等诸多强大功能集成在一个易于使用的视窗环境中,为科学研究、工程设计以及必须进行有效数值计算的众多科学领域提供了一种全面的解决方案,并在很大程度上摆脱了传统非交互式程序设计语言(如C、Fortran)的编辑模式。 解线性方程组的方法大致可以分为两类:直接方法和迭代法。直接方法是指假设计算过程中不产生舍入误差,经过有限次运算可求得方程组的精确解的方法;迭代法是从解的某个近似值出发,通过构造一个无穷序列去逼近精确解的方法。 Matlab解线性方程组是比较经典的题目,需要熟练掌握。

2023-03-03

最全的Spark基础知识解答.pdf

Spark 是一种与 Hadoop 相似的开源集群计算环境,但是两者之间还存在一些不同之处,这些有用的不同之处使 Spark 在某些工作负载方面表现得更加优越,换句话说,Spark 启用了内存分布数据集,除了能够提供交互式查询外,它还可以优化迭代工作负载。 Spark 是在 Scala 语言中实现的,它将 Scala 用作其应用程序框架。与 Hadoop 不同,Spark 和 Scala 能够紧密集成,其中的 Scala 可以像操作本地集合对象一样轻松地操作分布式数据集。 本文档整理了spark所有的基本知识,带你入门spark,让你可以更详细的去了解spark,也为日后深入学习,打下良好的基础。Spark是一个通用引擎,可用它来完成各种各样的运算,包括 SQL 查询、文本处理、机器学习等,而在 Spark 出现之前,我们一般需要学习各种各样的引擎来分别处理这些需求。

2023-03-02

50个永不过时SQL性能优化技巧.pdf

SQL优化是一个大家都比较关注的热门话题,无论你在面试,还是工作中,都很有可能会遇到。这个资源整理了50个永不过时的SQL性能优化技巧,无论是在数据库表设计的时候,还是在SQL开发的时候,比较高频出现的优化点。 例如,查询SQL尽量不要使用select *,而是具体字段;避免在where子句中使用 or 来连接条件;避免在where子句中使用!=或<>操作符;将大的DELETE,UPDATE、INSERT 查询变成多个小查询;如何选择索引列的顺序;避免产生大事务操作;优化like语句等这样那样的问题。 作为数据开发人员,对SQL的优化,应该是我们必备的技能才是,熟练掌握它,让你的SQL代码快到飞起~~~

2023-03-02

MySQL数据库保姆级安装教程.pdf

MySQL数据库简单易学,使用广泛。我们可以自己搭建一个数据库环境,无论是新手的作为练习,还是老练程序员测试自己的开发程序,都是必不可少的。 MySQL是一个关系型数据库管理系统,由瑞典MySQL AB 公司开发,属于 Oracle 旗下产品。MySQL 是最流行的关系型数据库管理系统之一,在 WEB 应用方面,MySQL是最好的 RDBMS (Relational Database Management System,关系数据库管理系统) 应用软件之一。MySQL是一种关系型数据库管理系统,关系数据库将数据保存在不同的表中,而不是将所有数据放在一个大仓库内,这样就增加了速度并提高了灵活性。

2023-03-01

Docker 常用命令大全.pdf

Docker 是一个开源的应用容器引擎,让开发者可以打包他们的应用以及依赖包到一个可移植的镜像中,然后发布到任何流行的 Linux或Windows操作系统的机器上,也可以实现虚拟化。容器是完全使用沙箱机制,相互之间不会有任何接口。 Docker在操作的过程中,会遇到很多的命令,每一次使用查询起来都比较麻烦,所以我整理了一份Docker 常用命令大全分享给大家,这样在实用的过程中,直接在文档搜索就可以了,更加的便利,需要的小伙伴可以自行下载。

2023-03-01

100道MySQL经典面试题及答案.pdf

100道MySQL经典面试题及答案:整理了100道MySQL数据库面试心经,不仅有基础的数据库知识,还包含一些中级和高级的知识面试题,并贴心的为大家将答案也一并整理,帮助小伙伴们在准备面试的过程中,省时省心省力,一步到位。 该内容,一部分来源自己面试的过程中经常遇到的,还有一部分来自同事朋友面试的过程中高频出现的,日积月累的结果。现在将它分享给大家,希望帮助下载学习的小伙伴可以有更满意的面试结果。

2023-03-01

Hive SQL大厂必考常用窗口函数及面试题.pdf

窗⼝函数也称为OLAP函数,OLAP 是OnLine Analytical Processing 的简称,意思是对数据库数据进⾏实时分析处理。例如,市场分析、创建财务报表、创建计划等⽇常性商务⼯作。窗⼝函数就是为了实现OLAP ⽽添加的标准SQL 功能。 聚合函数是将多条记录聚合为⼀条;窗⼝函数是每条记录都会执⾏,有⼏条记录执⾏完还是⼏条。窗⼝函数兼具GROUP BY ⼦句的分组功能以及ORDER BY ⼦句的排序功能。但是,PARTITION BY ⼦句并不具备 GROUP BY ⼦句的汇总功能。

2023-02-28

选择法排序与冒泡排序.md

选择法排序与冒泡排序,无论是在平常使用的过程中,还是在面试的过程中,使用的频率还是比较高的,所以我们需要熟练的掌握它。 选择排序法:是将一堆数,从前往后逐个扫描,在扫描一遍的过程需要从前往后边扫描要边记录最小的那个值,最后一步进行替换。 冒泡排序法:是将 一堆数 从前往后 两个两个 逐个扫描,两个数将大的数放到后边,这样扫一遍,就可以在这堆末尾排好一个数(你可以理解为从前往后扫,把大的数从后依次往前排),仔细观察,扫描一次,排好一个数,以此类推。

2023-02-28

输出n以内的所有素数(C、Java、python语言).txt

素数。一个大于1的自然数,除了1和它自身外,不能被其他自然数整除的数叫做质数;否则称为合数(规定1既不是质数也不是合数)。 文档内容是从C语言、Java语言和python语言的角度去编写一个程序,找出1~N中的所有素数,其中1<N,N为整数。该练习题是我们很长用到的面试题,以及练手的小题目,所以需要熟练掌握。

2023-02-28

Hive数据库连接驱动

本资源包含Hive数据库连接所需要的驱动,为了方便我们在用第三方工具链接Hive数据库的时候,解决驱动的问题,而自己在下载的时候,资源又不是很好找,所以在这里打包分享给大家。不过大家在下载使用的时候,还需要注意自己Hadoop大数据平台对应版本的问题,不同的Hadoop平台搭建的Hive数据库,可能也会遇到版本的问题,请知晓。 请大家按需下载,有问题可以随时联系交流,enjoy~~

2023-02-27

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除