transformer.config/tokenizer/model

本文详细介绍了Transformer模型的Tokenizer类,包括全Python和基于Rust的快速实现,以及Model和Config的使用方法。Tokenizer负责模型输入的准备,如字符串到token IDs的转换,支持特殊token管理和添加。Model的加载、属性和方法,以及Config的属性和方法也进行了说明。
摘要由CSDN通过智能技术生成

transformers 框架主要有三个类model 类、configuration 类、tokenizer 类,这三个类,所有相关的类都衍生自这三个类,他们都有 from_pretained() 方法和 save_pretrained() 方法。


transformers 框架主要有三个类 model 类、 configuration 类、 tokenizer 类,这三个类,所有相关的类都衍生自这三个类,他们都有 from_pretained() 方法和 save_pretrained() 方法。

Tokenizer

Tokenizer 负责为模型准备输入。大多数tokenizers 都有两种使用风格:全python实现和基于Rust library tokenizers的 fast 实现。fast 实现允许:1)大大提高了速度,尤其是在batched tokenization时,2)在 original string(字符和单词)和 token space 之间映射的额外方法(比如,获取包含给定字符或与给定token相对应的字符范围的index of the token)。当前,基于SentencePiece的 Tokenizer(针对T5,ALBERT,CamemBERT,XLMRoBERTa和XLNet模型)没有可用的“快速”实现。

有两个基类:PreTrainedTokenizer and PreTrainedTokenizerFast,实现在模型输入中编码字符串输入的通用方法,从本地文件或目录或库(from HuggingFace’s AWS S3 repository)提供的预训练的Tokenizer实例化/保存python和“快速”Tokenizer。

因此,PreTrainedTokenizerPreTrainedTokenizerFast实现了使用所有Tokenizer的主要方法:

  • tokenizing (spliting strings in sub-word token strings), 把 tokens strings 转换成 to ids, and encoding/decoding (i.e. tokenizing + convert to integers),

  • 以一种与底层结构无关的方式添加 new tokens to the vocabulary (BPE, SentencePiece…),

  • 管理特殊的tokens,如 mask, beginning-of-sentence, etc(adding them, assigning them to attributes in the tokenizer for easy access)

BatchEncoding 保存 Tokenizer 的编码方法(__call__, encode_plus and batch_encode_plus)的输出,且继承自 Python dictionary。当 tokenizer 是 pure python tokenizer 时,此类的行为就像标准的python字典一样,并包含由这些方法 (input_ids, attention_mask…)计算出的各种模型输入。当tokenizer 是 fast tokenizer 时,此类另外提供了几种高级对齐方法,可用于在原始字符串(character and words) 和 token space 进行映射(例如获取包含给定字符或与给定 token 相对应的字符范围的index of the token

@classmethod
PreTrainedTokenizer()

Parameters

  • model_max_length – (Optional) int: 输入tokens的最大长度。用 from_pretrained 加载时,基本所有模型默认都是512。
  • padding_side – 填充位置,right(default) or left
  • additional_special_tokens (-) – (Optional) list: a list of additional special tokens. 在此处添加所有 special tokens。将与self.additional_special_tokensself.additional_special_tokens_ids关联

使用(以 BertTokenizer 为例)

加载

一般都是直接加载预训练模型,传入参数可以是本地目录也可以是模型的名字

tokenizer = BertTokenizer.from_pretrained('E:/data/transformers/bert-base-uncased')
# 可以传入的参数:
padding_side
xxx_token

可以直接调用tokenizer,(实际上是 __call__() 函数)。效果和 encode_plus() 一样。可以看下面。

词典

tokenizer.get_vocab()
tokenizer.vocab,文件 <vocab.txt> 的内容。实际上是 tokens_to_ids
tokenizer.ids_to_tokens,字面意思

tokenizer.get_vocab()
# {'[PAD]': 0, '[unused0]': 1, ...}
tokenizer.vocab
# OrderedDict([('[PAD]', 0), ('[unused0]', 1), ...])
tokenizer.ids_to_tokens
# OrderedDict([(0, '[PAD]'), (1, '[unused0]'), ...])

tokenizer.vocab_size,文件 <vocab.txt> 的大小
len(tokenizer),tokenizer 的词典大小,包括自己添加的词和token。

tokenizer.vocab_size
# 30522
len(tokenizer) #假设添加了bos和eos
# 30524

如果添加了token,那添加的token和id的映射为added_tokens_encoderadded_tokens_decoder

tokenizer.added_tokens_encoder
# {'[EOS]': 30522, '[BOS]': 30523}
tokenizer.added_tokens_decoder
# {30522: '[EOS]', 30523: '[BOS]'}

总之 len(tokenizer) == len(tokenizer.vocab) + len(tokenizer.added_tokens_encoder)

token

special token

7个预置的 speical token分别为:bos_token, eos_token, unk_token, sep_token, pad_token, cls_token, mask_token,还有一个额外的:additional_special_tokens

tokenizer.SPECIAL_TOKENS_ATTRIBUTES
# ['bos_token',  'eos_token',  'unk_token',  'sep_token',  'pad_token',  'cls_token',  'mask_token',   additional_special_tokens']

以上都是 tokenizer 的一个attribute,对应一个 token:

for t in tokenizer.SPECIAL_TOKENS_ATTRIBUTES: print(eval(f'tokenizer.{t}'), end=' ')
# None None [UNK] [SEP] [PAD] [CLS] [MASK] [] 

注意如果 tokenizer 没有某个 special token,对应的属性值为None
可以在加载的时候传入该 token 的值,也可以使用 add_special_tokens() 方法传入一个键为special token值为str的字典,具体值都可以自定义,还可以传入additional_special_tokens(当然是值为列表):

# (1)
tokenizer = BertTokenizer.from_pretrained('E:/data/transformers/bert-base-uncased', bos_token='[BOS]', eos_token=
馆可以帮助我们更加深入地了解宜宾的地理特点和人文景观,对于地理这个错误表明在使用Hugging Face的模型处理问题时,连接到Hugging Face服务器时出现了问题。 根据错误信息,可能是由于代理服务器导致的问题。请检查代理服务器的设置是否正确,并确知识的学习也有很大的帮助。 例如,在参观宜宾博物馆的过程中,我们可以保代理服务器正常工作。如果代理服务器设置正确且正常工作,那么可能是代理服务器与Hugging Face服务器之间的连接出现了问题。 您可以尝试连接到其他网站,例如Google,以查看了解到宜宾的自然地理环境、人文地理特点等,这些知识可以帮助我们代理服务器是否正常工作,并查看是否存在其他代理服务器可用。如果代理服务器无法正常工作或无法连接到其他代理服务器,请尝试在不使用代理服务器的情况下运行代码。 另外更加深入地了解宜宾的地理特点和人文景观。 综上所述,参观宜宾,如果您使用的是Hugging Face Transformer库中的`pipeline`函数,可以尝试将`pipeline`函数的`use_fast=False`选项设置为`True`,这将会使用较慢但更可靠的模型加载方式。例如: 博物院可以帮助我们解决很多教材难题,不仅可以增长知识,还可以帮助我们``` nlp = pipeline('question-answering', model='distilbert-base-uncased-distilled-squad', tokenizer='distilbert-base-uncased', use_fast=False) ``` 这可能会解决一些与Hugging Face服务器连接相关的问题。
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>