2366. 将数组排序的最少替换次数

2366. 将数组排序的最少替换次数

给你一个下表从 0 开始的整数数组 nums 。每次操作中,你可以将数组中任何一个元素替换为 任意两个 和为该元素的数字。

比方说,nums = [5,6,7] 。一次操作中,我们可以将 nums[1] 替换成 2 和 4将 nums 转变成 [5,2,4,7]
请你执行上述操作,将数组变成元素按 非递减 顺序排列的数组,并返回所需的最少操作次数。

示例 1:

输入:nums = [3,9,3]
输出:2
解释:以下是将数组变成非递减顺序的步骤:

  • [3,9,3] ,将9 变成 3 和 6 ,得到数组 [3,3,6,3]
  • [3,3,6,3] ,将 6 变成 3 和 3 ,得到数组 [3,3,3,3,3] 总共需要 2 步将数组变成非递减有序,所以我们返回 2 。

示例 2:

输入:nums = [1,2,3,4,5]
输出:0
解释:数组已经是非递减顺序,所以我们返回 0 。

提示:

1 <= nums.length <= 1e5
1 <= nums[i] <= 1e9

解析:

  • 使用倒序+贪心策略
  • 为什么使用倒序?因为最后一个数一定肯定不会分解,并且前一个数是否分解、最少分解几次可以根据后一个数决定。
  • 例如:3 9 3;3一定不会分解,9由于大于3需要分解,需要分解几次就需要贪心策略了。
  • 我们想要的是分解的次数尽量小,同时还要保证分解之后最前边一个数尽量大。
  • 例如:28 9–>分解为 7 7 7 7 9肯定是优于5 5 9 9 9的,次数一样,7>5
  • 贪心来了,我们可以枚举分解次数,
  • 假如分解一次28/2=14,最大值>9不行;
  • 分解2次28/3=9…1,肯定有个数为10也不行;
  • 分解3次,28/4=7,可以;
  • 因此,可以枚举最大次数来确定答案。同样可以证明分解四次优于分解五次,分解五次数小了,次数多了。肯定分解四次最优。
  • 难道我们要从1开始枚举吗?其实是不需要的,可以从nums[i]/nums[i+1]开始枚举,最少次数就是max(nums[i]/nums[i+1],1).
class Solution {
    typedef long long ll;
public:
    // 倒序:最后一个数肯定不用分解。贪心保证后边尽量大
    long long minimumReplacement(vector<int>& nums) {
        ll res=0;
        int n=nums.size();
        for(int i=n-2;i>=0;i--){
            if(nums[i]>nums[i+1]){
            	// 这里cnt表示的是分解之后数的个数,也就是cnt=分解次数+1
            	// 最少分解次数为1
                int cnt=max(nums[i]/nums[i+1],2);
                // 枚举分解次数(这里应该可以用二分枚举)
                // 30/4=7...2;最大值为8,30-->7 7 7+1 7+1相当于将2补给后边两个7
                while(true){
                    if((nums[i]/cnt+(nums[i]%cnt==0?0:1))<=nums[i+1])
                        break;
                    else 
                        cnt++;
                }
                res+=cnt-1;
                // 更新当前位置的值
                nums[i]=nums[i]/cnt;
            }
        }
        return res;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值