吴帮吕
码龄7年
关注
提问 私信
  • 博客:43,583
    43,583
    总访问量
  • 7
    原创
  • 1,582,884
    排名
  • 60
    粉丝
  • 0
    铁粉
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:云南省
  • 加入CSDN时间: 2018-04-23
博客简介:

weixin_42052081的博客

查看详细资料
个人成就
  • 获得70次点赞
  • 内容获得21次评论
  • 获得248次收藏
  • 代码片获得120次分享
创作历程
  • 16篇
    2019年
  • 6篇
    2018年
成就勋章
TA的专栏
  • word2vec模型
    4篇
  • 社区发现(Community Detection)算法
    1篇
创作活动更多

仓颉编程语言体验有奖征文

仓颉编程语言官网已上线,提供版本下载、在线运行、文档体验等功能。为鼓励更多开发者探索仓颉编程语言,现诚邀各位开发者通过官网在线体验/下载使用,参与仓颉体验有奖征文活动。

368人参与 去创作
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

二项分布可以由泊松分布近似:

发布资源 2019.04.25 ·
ppt

逻辑回归实战

简介  Logistic回归是一种机器学习分类算法,用于预测分类因变量的概率。 在逻辑回归中,因变量是一个二进制变量,包含编码为1(是,成功等)或0(不,失败等)的数据。 换句话说,逻辑回归模型预测P(Y = 1)是X的函数。  数据  该数据集来自UCI机器学习库,它与葡萄牙银行机构的直接营销活动(电话)有关。 分类目标是预测客户是否将购买定期存款(变量y)。 数据集可以从这里下载或...
转载
发布博客 2019.04.17 ·
728 阅读 ·
1 点赞 ·
1 评论 ·
0 收藏

图神经网络的基本结构及演变过程

图神经网络的基本结构及演变过程引言2019年伊始,一篇年度十大科技展望吸引了广泛的关注,其中一个趋势与本章的主题相关:“超大规模图神经网络系统将赋予机器常识”。而这已经不是图神经网络第一次被放到深度学习技术的头条位置了。2018年,DeepMind、谷歌大脑、MIT和爱丁堡大学的27名作者,对图神经网络及其推理能力进行了全面阐述[1]。随后,图卷积网络(Graph Convolution...
转载
发布博客 2019.04.16 ·
3253 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

什么是*args和**kwargs

def example(*args, **kwargs): print('-------------------') print('args = ', args) print('kwargs = ', kwargs) print('-------------------') if __name__ == '__main__': example(1,...
转载
发布博客 2019.04.13 ·
192 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

MXNET学习地点

在线书地址:https://zh.gluon.ai/toc.htmlGitHub项目:https://github.com/diveintodeeplearning/d2l-zhPDF:https://zh.gluon.ai/gluon_tutorials_zh.pdf视频:https://space.bilibili.com/209599371/channel/detail?...
原创
发布博客 2019.04.12 ·
183 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

word2vec_numpy-master

发布资源 2019.04.12 ·
zip

NumPy实现Word2vec

import numpy as npfrom collections import defaultdictgetW1 = [[0.236, -0.962, 0.686, 0.785, -0.454, -0.833, -0.744, 0.677, -0.427, -0.066], [-0.907, 0.894, 0.225, 0.673, -0.579, -0.428, 0.685, 0...
转载
发布博客 2019.04.12 ·
1336 阅读 ·
0 点赞 ·
0 评论 ·
3 收藏

图解Word2vec,读这一篇就够了

https://mp.weixin.qq.com/s/kFiP2k6selIptz50QHfSrw
转载
发布博客 2019.04.10 ·
1195 阅读 ·
2 点赞 ·
0 评论 ·
1 收藏

GCN学习笔记:第一部分,手把手用Numpy实现GCN

第一部分:图卷积网络到底怎么做,这是一份极简的Numpy实现由于图结构非常复杂且信息量很大,因此对于图的机器学习是一项艰巨的任务。本文介绍了如何使用图卷积网络(GCN)对图进行深度学习,GCN 是一种可直接作用于图并利用其结构信息的强大神经网络。本文将介绍 GCN,并使用代码示例说明信息是如何通过 GCN 的隐藏层传播的。读者将看到 GCN 如何聚合来自前一层的信息,以及这种机制如何生成图...
原创
发布博客 2019.04.09 ·
15955 阅读 ·
57 点赞 ·
20 评论 ·
196 收藏

图卷积网络到底怎么做,这是一份极简的Numpy实现

由于图结构非常复杂且信息量很大,因此对于图的机器学习是一项艰巨的任务。本文介绍了如何使用图卷积网络(GCN)对图进行深度学习,GCN 是一种可直接作用于图并利用其结构信息的强大神经网络。本文将介绍 GCN,并使用代码示例说明信息是如何通过 GCN 的隐藏层传播的。读者将看到 GCN 如何聚合来自前一层的信息,以及这种机制如何生成图中节点的有用特征表征。何为图卷积网络?...
转载
发布博客 2019.04.07 ·
808 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

将Excel表格中的两列数据导入到记事本txt文件中,且两列数据间距都为一个空格的距离

设数据列为A列和B列,在C列(C1)输入=A1&" "&B1公式中的西文引号间是4个空格公式向下填充。复制C列,粘贴到txt文件追问:我刚才试了一下,可是我的数据的第二列是小数点后有三位数的数值。这样的话我用这个方法第二列的数值小数点后面的数值就没有了。您能帮我解决一下这个问题吗?谢谢了!!!如果小数位数是固定三位的话,将C1的公式变一下...
转载
发布博客 2019.04.05 ·
5433 阅读 ·
1 点赞 ·
0 评论 ·
6 收藏

《Graph Learning》| 第一章:缤纷的图世界

《Graph Learning》| 第一章:缤纷的图世界原创: 刘忠雨 极验 2018-05-31  技术专栏  本文作者:刘忠雨由萝卜兔编辑整理 通过前文《浅析图卷积神经网络》的介绍,相信大家对于图学习有了一个初步的认识,接下来我们将更加细致的解析图学习的相关知识。 开启图学习算法的第一步:理解什么是图 在数学上,图(Graph)是表示对象与对象之间关系的...
转载
发布博客 2019.01.17 ·
244 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

KDD2018 网络表示学习最新教程:DeepWalk作者Perozzi等人带你探索最前沿

【导读】近日,数据挖掘领域最具影响力的学术会议之一的ACM SIGKDD (知识发现与数据挖掘会议)已于 8 月 19 日在英国伦敦召开。在这次会议上,来自伊利诺伊大学芝加哥分校(UIC)的Ivan Brugere老师、Google的Bryan Perozzi老师、清华大学的崔鹏、朱文武老师、西蒙弗雷泽大学的PEI JIAN老师以及伊利诺伊大学芝加哥分校的Tanya Berger-Wolf老师分享...
转载
发布博客 2019.01.17 ·
878 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

BA网络构造原理

import numpy as npimport randomunnormalized_probs = [] #node idnode = [1,5,3,7,9]snode = sorted(node) # weights for nodesa=[2,2,2,2,2]norm_const = sum(a)normalized_probs = [float(u_prob)/nor...
转载
发布博客 2019.01.11 ·
3832 阅读 ·
6 点赞 ·
0 评论 ·
8 收藏

karate--deepwalk.embedding 及 karate--node2vec.embedding散点图绘制

一,karate--deepwalk.embedding# -- coding: utf-8import pandas as pdimport matplotlib.pyplot as pltimport numpy as npdf=pd.read_csv(r"C:\Users\WBL\Desktop\DeepWalk\karate--deepwalk.embedding.csv")...
原创
发布博客 2019.01.10 ·
574 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

node2vec嵌入向量散点图绘制

# -- coding: utf-8import pandas as pdimport matplotlib.pyplot as pltimport numpy as npdf=pd.read_csv(r"C:\Users\WBL\Desktop
ode2vec-master\karate--node2vec.embeddings.csv") # r为转义字符# print(df....
原创
发布博客 2019.01.10 ·
852 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

matplotlib 使用总结——散点图

一、散点图引入 什么是散点图? 反映两组变量每个数据点的值,并且从散点图可以看出它们之间的相关性。单看概念可能不太好理解,我们可以从一个例子说起。下面我们通过例子边学边做。 在做散点图之前,最重要的是我们得有数据啊,数据很重要。这里我们利用关于karate--deepwalk.embeddings的数据,假设存储在目录C:\Users\WBL\Desktop\DeepWalk\karate-...
原创
发布博客 2019.01.09 ·
652 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

运行

1.python __main__.py --input C:\Users\WBL\Desktop\DeepWalk\deepwalk-master\example_graphs/karate.adjlist --number-walks 40 --representation-size 2 --walk-length 40 --window-size 10 --output C:\Users\W...
原创
发布博客 2019.01.09 ·
171 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

网络表示学习 常用数据集

Zachary’s karate club一个大学空手道俱乐部的社交关系图, 很多论文中都喜欢用它做例子. 这个图比较简单, 有34个节点, 78条边.youtube 2数据集介绍见[2]. node有两种, personperson 与 groupgroup, edge 也有两种, friend⊆(person×person)friend⊆(person×person), mem...
转载
发布博客 2018.12.16 ·
795 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

大致了解一下DeepWalk

大致了解一下DeepWalk讲到DeepWalk,不得不说的Word2Vec CBOW模型 CBOW模型的理解 CBOW模型流程举例 Skip-Gram模型 模型 假任务 模型细节 隐层 输出层 直觉 下一步 一些常用的trick 词组 降采样常用词 采样率 Negative Sampling ...
转载
发布博客 2018.12.10 ·
821 阅读 ·
0 点赞 ·
0 评论 ·
4 收藏
加载更多