本文介绍以下内容:
- 使用transformers框架做预训练的bert-base模型;
- 开发平台使用Google的Colab平台,白嫖GPU加速;
- 使用datasets模块下载IMDB影评数据作为训练数据。
transformers模块简介
transformers框架为Huggingface开源的深度学习框架,支持几乎所有的Transformer架构的预训练模型。使用非常的方便,本文基于此框架,尝试一下预训练模型的使用,简单易用。
本来打算预训练bert-large模型,发现colab上GPU显存不够用,只能使用base版本了。打开colab,并且设置好GPU加速,接下来开始介绍代码。
代码实现
首先安装数据下载模块和transformers包。
!pip install datasets
!pip install transformers
使用datasets下载IMDB数据,返回DatasetDict类型的数据.返回的数据是文本类型,需要进行编码。下面会使用tokenizer进行编码。
from datasets import load_dataset
imdb = load_dataset('imdb')
print(imdb['train'][:

本文介绍了如何在Google Colab上利用Huggingface的transformers框架,借助GPU加速训练BERT-base模型。通过datasets模块下载IMDB数据,使用AutoModelForSequenceClassification和AutoTokenizer进行模型和tokenizer的创建,设定训练参数并进行模型训练和评估。
最低0.47元/天 解锁文章
100

被折叠的 条评论
为什么被折叠?



