卷积网络基础知识---Depthwise Convolution && Pointwise Convolution && Separable Convolution
https://cloud.tencent.com/developer/article/1453992卷积神经网络在图像处理中的地位已然毋庸置疑。卷积运算具备强大的特征提取能力、相比全连接又消耗更少的参数,应用在图像这样的二维结构数据中有着先天优势。然而受限于目前移动端设备硬件条件,显著降低神经网络的运算量依旧是网络结构优化的目标之一。本文所述的Separable Convolution就是降低卷积运算参数量的一种典型方法。常规卷积运算假设输入层为一个大小为64×64像素、三通道彩色图片。经过一个包含



