Kafka生产者

Kafka生产者

代码

同步

import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerConfig;
import org.apache.kafka.clients.producer.ProducerRecord;

import java.util.HashMap;
import java.util.Map;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;
public class MyProducer1 {
    public static void main(String[] args) throws InterruptedException, ExecutionException, TimeoutException {
        Map<String, Object> configs = new HashMap<>();
        // 指定生产者客户端连接Kafka集群所需要的broker地址清单,多个用逗号分隔
        configs.put(ProducerConfig.BOOTSTRAP_SERVERS_CONFIG, "ip:port");
        // 健和值的序列化器
        configs.put(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.IntegerSerializer");
        configs.put(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG, "org.apache.kafka.common.serialization.StringSerializer");
        /**
         * 指定分区中必须有多少个副本收到该消息,才认为这条消息是成功写入的
         * 1.leader副本成功写入即成功
         * 0.不要求
         * -1.所有副本成功写入才算成功
         */
        configs.put(ProducerConfig.ACKS_CONFIG, "1");
        // 生产者能发送的消息最大值,默认1M,单位B
        configs.put(ProducerConfig.MAX_REQUEST_SIZE_CONFIG,1048576);
        // 重试次数
        configs.put(ProducerConfig.RETRIES_CONFIG, 1);
        // 重试之间的时间间隔
        configs.put(ProducerConfig.RETRY_BACKOFF_MS_CONFIG,100);
        /**
         * 压缩类型,默认 none
         * gzip,snappy,lz4
         */
        configs.put(ProducerConfig.COMPRESSION_TYPE_CONFIG,"none");
        // 多久后关闭闲置的连接,默认540000毫秒,9分钟
        configs.put(ProducerConfig.CONNECTIONS_MAX_IDLE_MS_CONFIG,540000);
        // 生产者发送消息之前等待更多消息加入ProducerRecord时间
        configs.put(ProducerConfig.LINGER_MS_CONFIG,0);
        // socket接收消息缓冲区的大小,默认32KB
        configs.put(ProducerConfig.RECEIVE_BUFFER_CONFIG,32768);
        // SOCKET发送消息缓冲区大小
        configs.put(ProducerConfig.SEND_BUFFER_CONFIG,131072);
        // 生产者等待请求响应的最长时间,默认30000ms
        configs.put(ProducerConfig.REQUEST_TIMEOUT_MS_CONFIG,30000);
        // 消息累加器缓存的大小
        configs.put(ProducerConfig.BUFFER_MEMORY_CONFIG,32 * 1024 * 1024);
        // 生产者线程族弟啊阻塞毫秒数
        configs.put(ProducerConfig.MAX_BLOCK_MS_CONFIG,60 * 1000);
        // BufferPool管理对象大小配置
        configs.put(ProducerConfig.BATCH_SIZE_CONFIG,16384);
        // 事务ID,必须唯一
        configs.put(ProducerConfig.TRANSACTIONAL_ID_CONFIG,1);
        // KafkaProducer是线程安全的
        KafkaProducer<Integer, String> producer = new KafkaProducer<Integer, String>(configs);
        ProducerRecord<Integer, String> record = new ProducerRecord<>(
                "topic_1",
                0,
                0,
                "message 0"
        );
        producer.send(record).get(3_000, TimeUnit.MILLISECONDS);
        // 回收资源。会阻塞等待之前的所有的发送请求完成后再关闭KafkaProducer
        producer.close();
    }
}

异步

import org.apache.kafka.clients.producer.Callback;
import org.apache.kafka.clients.producer.KafkaProducer;
import org.apache.kafka.clients.producer.ProducerRecord;
import org.apache.kafka.clients.producer.RecordMetadata;

import java.util.HashMap;
import java.util.Map;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeoutException;

public class MyProducer2 {
    public static void main(String[] args) throws InterruptedException, ExecutionException, TimeoutException {
        Map<String, Object> configs = new HashMap<>();
        configs.put("bootstrap.servers", "47.97.73.187:9092");
        configs.put("key.serializer", "org.apache.kafka.common.serialization.IntegerSerializer");
        configs.put("value.serializer", "org.apache.kafka.common.serialization.StringSerializer");
        configs.put("acks", "1");
        KafkaProducer<Integer, String> producer = new KafkaProducer<Integer, String>(configs);
        ProducerRecord<Integer, String> record = new ProducerRecord<>(
                "topic_1",
                0,
                0,
                "message 0"
        );
        producer.send(record, new Callback() {
            @Override
            public void onCompletion(RecordMetadata recordMetadata, Exception e) {
                if (e != null) {
                    System.out.println("主题:" + recordMetadata.topic() + "\n"
                            + "分区:" + recordMetadata.partition() + "\n"
                            + "偏移量: " + recordMetadata.offset() + "\n"
                            + "序列化的key字节:" + recordMetadata.serializedKeySize() + "\n"
                            + "序列化的value字节:" + recordMetadata.serializedValueSize() + "\n"
                            + "时间戳:" + recordMetadata.timestamp());
                } else {
                    System.out.println("有异常" + e.getMessage());
                }
            }
        });
        producer.close();
    }
}

ProducerRecord

public class ProducerRecord<K, V> {
	// 主题
    private final String topic;
    // 分区
    private final Integer partition;
    // 消息头
    private final Headers headers;
    // 健
    private final K key;
    // 值
    private final V value;
    // 消息的时间戳
    private final Long timestamp;
}

核心组件

序列化器

org.apache.kafka.common.serialization.Serializer

分区器

org.apache.kafka.clients.producer.Partitioner

当消息ProducerRecord中没有指定partition字段,那么就需要依赖分区器,根据Key这个字段来计算partition的值。

  • 默认的分区器

org.apache.kafka.clients.producer.internals.DefaultPartitioner

  • 配置分区器的属性key

org.apache.kafka.clients.producer.ProducerConfig#PARTITIONER_CLASS_CONFIG

拦截器

org.apache.kafka.clients.producer.ProducerInterceptor

生产者再将消息序列化和计算分区之前会调用生产者拦截器的onSend()方法来对消息进行相应的定制化操作。

  • 配置拦截器的属性key

org.apache.kafka.clients.producer.ProducerConfig#INTERCEPTOR_CLASSES_CONFIG

当有多个拦截器的时候,类名用逗号分隔

原理在这里插入图片描述

在整个流程中,生产者客户端由主线程产生消息,并通过拦截器、序列化器、分区器后进入消息累加器缓存。然后发送线程从消息累加器中获取消息并将消息发送给Broker中。

主线程代码流转

  1. 调用拦截器处理
public Future<RecordMetadata> send(ProducerRecord<K, V> record, Callback callback) {
        // intercept the record, which can be potentially modified; this method does not throw exceptions
    // 拦截器处理
        ProducerRecord<K, V> interceptedRecord = this.interceptors.onSend(record);
        return doSend(interceptedRecord, callback);
    }
  1. 经过序列化器-分区器-放入累加器
private Future<RecordMetadata> doSend(ProducerRecord<K, V> record, Callback callback) {
        TopicPartition tp = null;
        try {
            // 序列化器
            byte[] serializedKey;
            try {
                serializedKey = keySerializer.serialize(record.topic(), record.headers(), record.key());
            } catch (ClassCastException cce) {
                throw new SerializationException("Can't convert key of class " + record.key().getClass().getName() +
                        " to class " + producerConfig.getClass(ProducerConfig.KEY_SERIALIZER_CLASS_CONFIG).getName() +
                        " specified in key.serializer", cce);
            }
            byte[] serializedValue;
            try {
                serializedValue = valueSerializer.serialize(record.topic(), record.headers(), record.value());
            } catch (ClassCastException cce) {
                throw new SerializationException("Can't convert value of class " + record.value().getClass().getName() +
                        " to class " + producerConfig.getClass(ProducerConfig.VALUE_SERIALIZER_CLASS_CONFIG).getName() +
                        " specified in value.serializer", cce);
            }
            // 分区器
            int partition = partition(record, serializedKey, serializedValue, cluster);
            tp = new TopicPartition(record.topic(), partition);

            setReadOnly(record.headers());
            Header[] headers = record.headers().toArray();

            int serializedSize = AbstractRecords.estimateSizeInBytesUpperBound(apiVersions.maxUsableProduceMagic(),
                    compressionType, serializedKey, serializedValue, headers);
            ensureValidRecordSize(serializedSize);
            
			// 将消息放入累加器缓冲
            RecordAccumulator.RecordAppendResult result = accumulator.append(tp, timestamp, serializedKey,
                    serializedValue, headers, interceptCallback, remainingWaitMs);
            if (result.batchIsFull || result.newBatchCreated) {
                log.trace("Waking up the sender since topic {} partition {} is either full or getting a new batch", record.topic(), partition);
                this.sender.wakeup();
            }
            return result.future;
        } catch (Exception e) {
        }
    }

Sender线程代码流转

  • org.apache.kafka.clients.producer.internals.Sender#run()
  • org.apache.kafka.clients.producer.internals.Sender#run(long)
  • org.apache.kafka.clients.producer.internals.Sender#sendProducerData
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值