opencv检测图片重复区域_Python人工智能使用OpenCV进行图片形状的中心检测

这篇博客介绍了如何利用OpenCV和Python进行物体形状的质心检测。内容包括Opencv二值化处理、中心距函数的应用,以及多物体形状质心的检测方法,涉及到cv2.findContours()和cv2.drawContours()函数的使用。这些技术在工业视觉和目标检测追踪中有广泛应用。
摘要由CSDN通过智能技术生成
头条号:人工智能研究所
微信号:启示AI科技

我们都知道正方形(长方形)的中心是2条对角线的交点,圆的中心是一个圆的圆心,如何在对象检测以及图片检测与识别领域,判断一个形状的中心,便是计算机视觉领域中的一个基础检测

f9bd86a3a299d3081fd1d165d5537556.png

中心检测

Opencv+python 实现物体形状的质心检测

OpenCV(Open Source Computer Vision Library)是一个开源的计算机视觉和机器学习软件库。OpenCV的建立是为了给计算机视觉应用提供一个通用的基础设施,并加速机器感知在商业产品中的应用。作为BSD授权的产品,OpenCV使企业很容易利用和修改代码。

它拥有C++、Python、Java和MATLAB接口,支持Windows、Linux、Android和Mac OS。OpenCV主要倾向于实时视觉应用,并在可用时利用MMX和SSE指令。目前正在积极开发全功能的CUDAand OpenCL接口。有超过500种算法和大约10倍的函数组成或支持这些算法。OpenCV是用C++原生编写的,有一个模板化的接口,可以与STL容器无缝对接。

Opencv在计算机视觉领域的发挥了很大的作用,大部分的计算机视觉领域的相关应用都可以使用OpenCV来实现,当然很多神经网络训练的模型库,OpenCV也可以进行模型的调用,很大程度上方便了用户的使用

aafee377d37da9c692ed15f27c8db040.png

中心检测

import cv2
import numpy as np
img = cv2.imread('13.jpg')
gray_image = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
ret,thresh = cv2.threshold(gray_image,127,255,0)
M = cv2.moments(thresh)
cX = int(M["m10
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值