strassen矩阵乘法java,java矩阵乘法(Strassen算法) 使用java写的矩阵乘法实例(Strassen算法)...

想了解使用java写的矩阵乘法实例(Strassen算法)的相关内容吗,Jack_Weng在本文为您仔细讲解java矩阵乘法(Strassen算法)的相关知识和一些Code实例,欢迎阅读和指正,我们先划重点:java矩阵乘法,java矩阵,两矩阵相乘java代码,下面大家一起来学习吧。

Strassen算法于1969年由德国数学家Strassen提出,该方法引入七个中间变量,每个中间变量都只需要进行一次乘法运算。而朴素算法却需要进行8次乘法运算。

原理

Strassen算法的原理如下所示,使用sympy验证Strassen算法的正确性

import sympy as s

A = s.Symbol("A")

B = s.Symbol("B")

C = s.Symbol("C")

D = s.Symbol("D")

E = s.Symbol("E")

F = s.Symbol("F")

G = s.Symbol("G")

H = s.Symbol("H")

p1 = A * (F - H)

p2 = (A + B) * H

p3 = (C + D) * E

p4 = D * (G - E)

p5 = (A + D) * (E + H)

p6 = (B - D) * (G + H)

p7 = (A - C) * (E + F)

print(A * E + B * G, (p5 + p4 - p2 + p6).simplify())

print(A * F + B * H, (p1 + p2).simplify())

print(C * E + D * G, (p3 + p4).simplify())

print(C * F + D * H, (p1 + p5 - p3 - p7).simplify())

复杂度分析

$$f(N)=7\times f(\frac{N}{2})=7^2\times f(\frac{N}{4})=...=7^k\times f(\frac{N}{2^k})$$

最终复杂度为$7^{log_2 N}=N^{log_2 7}$

java矩阵乘法(Strassen算法)

代码如下,可以看看数据结构的定义,时间换空间。

public class Matrix {

private final Matrix[] _matrixArray;

private final int n;

private int element;

public Matrix(int n) {

this.n = n;

if (n != 1) {

this._matrixArray = new Matrix[4];

for (int i = 0; i < 4; i++) {

this._matrixArray[i] = new Matrix(n / 2);

}

} else {

this._matrixArray = null;

}

}

private Matrix(int n, boolean needInit) {

this.n = n;

if (n != 1) {

this._matrixArray = new Matrix[4];

} else {

this._matrixArray = null;

}

}

public void set(int i, int j, int a) {

if (n == 1) {

element = a;

} else {

int size = n / 2;

this._matrixArray[(i / size) * 2 + (j / size)].set(i % size, j % size, a);

}

}

public Matrix multi(Matrix m) {

Matrix result = null;

if (n == 1) {

result = new Matrix(1);

result.set(0, 0, (element * m.element));

} else {

result = new Matrix(n, false);

result._matrixArray[0] = P5(m).add(P4(m)).minus(P2(m)).add(P6(m));

result._matrixArray[1] = P1(m).add(P2(m));

result._matrixArray[2] = P3(m).add(P4(m));

result._matrixArray[3] = P5(m).add(P1(m)).minus(P3(m)).minus(P7(m));

}

return result;

}

public Matrix add(Matrix m) {

Matrix result = null;

if (n == 1) {

result = new Matrix(1);

result.set(0, 0, (element + m.element));

} else {

result = new Matrix(n, false);

result._matrixArray[0] = this._matrixArray[0].add(m._matrixArray[0]);

result._matrixArray[1] = this._matrixArray[1].add(m._matrixArray[1]);

result._matrixArray[2] = this._matrixArray[2].add(m._matrixArray[2]);

result._matrixArray[3] = this._matrixArray[3].add(m._matrixArray[3]);;

}

return result;

}

public Matrix minus(Matrix m) {

Matrix result = null;

if (n == 1) {

result = new Matrix(1);

result.set(0, 0, (element - m.element));

} else {

result = new Matrix(n, false);

result._matrixArray[0] = this._matrixArray[0].minus(m._matrixArray[0]);

result._matrixArray[1] = this._matrixArray[1].minus(m._matrixArray[1]);

result._matrixArray[2] = this._matrixArray[2].minus(m._matrixArray[2]);

result._matrixArray[3] = this._matrixArray[3].minus(m._matrixArray[3]);;

}

return result;

}

protected Matrix P1(Matrix m) {

return _matrixArray[0].multi(m._matrixArray[1]).minus(_matrixArray[0].multi(m._matrixArray[3]));

}

protected Matrix P2(Matrix m) {

return _matrixArray[0].multi(m._matrixArray[3]).add(_matrixArray[1].multi(m._matrixArray[3]));

}

protected Matrix P3(Matrix m) {

return _matrixArray[2].multi(m._matrixArray[0]).add(_matrixArray[3].multi(m._matrixArray[0]));

}

protected Matrix P4(Matrix m) {

return _matrixArray[3].multi(m._matrixArray[2]).minus(_matrixArray[3].multi(m._matrixArray[0]));

}

protected Matrix P5(Matrix m) {

return (_matrixArray[0].add(_matrixArray[3])).multi(m._matrixArray[0].add(m._matrixArray[3]));

}

protected Matrix P6(Matrix m) {

return (_matrixArray[1].minus(_matrixArray[3])).multi(m._matrixArray[2].add(m._matrixArray[3]));

}

protected Matrix P7(Matrix m) {

return (_matrixArray[0].minus(_matrixArray[2])).multi(m._matrixArray[0].add(m._matrixArray[1]));

}

public int get(int i, int j) {

if (n == 1) {

return element;

} else {

int size = n / 2;

return this._matrixArray[(i / size) * 2 + (j / size)].get(i % size, j % size);

}

}

public void display() {

for (int i = 0; i < n; i++) {

for (int j = 0; j < n; j++) {

System.out.print(get(i, j));

System.out.print(" ");

}

System.out.println();

}

}

public static void main(String[] args) {

Matrix m = new Matrix(2);

Matrix n = new Matrix(2);

m.set(0, 0, 1);

m.set(0, 1, 3);

m.set(1, 0, 5);

m.set(1, 1, 7);

n.set(0, 0, 8);

n.set(0, 1, 4);

n.set(1, 0, 6);

n.set(1, 1, 2);

Matrix res = m.multi(n);

res.display();

}

}

总结

相关文章

阅读终点,创作起航,您可以撰写心得或摘录文章要点写篇博文。去创作
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: Strassen矩阵乘法算法是一种用于计算两个矩阵乘积的高效方法,其基本思想是将原始矩阵划分为较小的子矩阵,并通过递归调用来计算乘积。下面是使用C语言实现Strassen矩阵乘法算法的一个示例: ```c #include<stdio.h> void strassen(int n, int A[][n], int B[][n], int C[][n]) { if (n == 1) { C[0][0] = A[0][0] * B[0][0]; return; } // 计算矩阵的中间大小 int half = n / 2; // 划分原始矩阵为四个子矩阵 int A11[half][half], A12[half][half], A21[half][half], A22[half][half]; int B11[half][half], B12[half][half], B21[half][half], B22[half][half]; int C11[half][half], C12[half][half], C21[half][half], C22[half][half]; int P[half][half], Q[half][half], R[half][half], S[half][half], T[half][half], U[half][half], V[half][half]; // 初始化子矩阵 for (int i = 0; i < half; i++) { for (int j = 0; j < half; j++) { A11[i][j] = A[i][j]; A12[i][j] = A[i][j + half]; A21[i][j] = A[i + half][j]; A22[i][j] = A[i + half][j + half]; B11[i][j] = B[i][j]; B12[i][j] = B[i][j + half]; B21[i][j] = B[i + half][j]; B22[i][j] = B[i + half][j + half]; } } // 递归调用计算子矩阵 strassen(half, A11, B11, P); strassen(half, A12, B21, Q); strassen(half, A11, B12, R); strassen(half, A12, B22, S); strassen(half, A21, B11, T); strassen(half, A22, B21, U); strassen(half, A21, B12, V); // 计算结果矩阵的子矩阵 for (int i = 0; i < half; i++) { for (int j = 0; j < half; j++) { C11[i][j] = P[i][j] + Q[i][j]; C12[i][j] = R[i][j] + S[i][j]; C21[i][j] = T[i][j] + U[i][j]; C22[i][j] = R[i][j] + T[i][j] + U[i][j] + V[i][j]; } } // 将子矩阵组合为结果矩阵 for (int i = 0; i < half; i++) { for (int j = 0; j < half; j++) { C[i][j] = C11[i][j]; C[i][j + half] = C12[i][j]; C[i + half][j] = C21[i][j]; C[i + half][j + half] = C22[i][j]; } } } int main() { int n; printf("请输入矩阵维度n:"); scanf("%d", &n); int A[n][n], B[n][n], C[n][n]; printf("请输入矩阵A:\n"); for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { scanf("%d", &A[i][j]); } } printf("请输入矩阵B:\n"); for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { scanf("%d", &B[i][j]); } } strassen(n, A, B, C); printf("结果矩阵C:\n"); for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) { printf("%d ", C[i][j]); } printf("\n"); } return 0; } ``` 这个示例代码实现了一个递归的Strassen矩阵乘法算法。用户需要在运行代码时输入矩阵的维度n,以及矩阵A和B的元素。程序将计算A和B的乘积,并打印结果矩阵C。 ### 回答2: Strassen矩阵乘法算法是一种用于快速计算矩阵乘法算法,采用分治策略,并且在一些情况下具有比传统算法更高的效率。下面是一个使用C语言实现Strassen矩阵乘法算法的例子: ```c #include <stdio.h> #include <stdlib.h> void strassen(int n, int A[][n], int B[][n], int C[][n]) { if (n == 2) { // 基本情况,直接使用传统算法计算 int P = (A[0][0] + A[1][1]) * (B[0][0] + B[1][1]); int Q = (A[1][0] + A[1][1]) * B[0][0]; int R = A[0][0] * (B[0][1] - B[1][1]); int S = A[1][1] * (B[1][0] - B[0][0]); int T = (A[0][0] + A[0][1]) * B[1][1]; int U = (A[1][0] - A[0][0]) * (B[0][0] + B[0][1]); int V = (A[0][1] - A[1][1]) * (B[1][0] + B[1][1]); C[0][0] = P + S - T + V; C[0][1] = R + T; C[1][0] = Q + S; C[1][1] = P + R - Q + U; } else { int newSize = n/2; int A11[newSize][newSize], A12[newSize][newSize], A21[newSize][newSize], A22[newSize][newSize]; int B11[newSize][newSize], B12[newSize][newSize], B21[newSize][newSize], B22[newSize][newSize]; int C11[newSize][newSize], C12[newSize][newSize], C21[newSize][newSize], C22[newSize][newSize]; int P1[newSize][newSize], P2[newSize][newSize], P3[newSize][newSize], P4[newSize][newSize], P5[newSize][newSize], P6[newSize][newSize], P7[newSize][newSize]; int i, j; for (i = 0; i < newSize; i++) { for (j = 0; j < newSize; j++) { A11[i][j] = A[i][j]; A12[i][j] = A[i][j + newSize]; A21[i][j] = A[i + newSize][j]; A22[i][j] = A[i + newSize][j + newSize]; B11[i][j] = B[i][j]; B12[i][j] = B[i][j + newSize]; B21[i][j] = B[i + newSize][j]; B22[i][j] = B[i + newSize][j + newSize]; } } strassen(newSize, A11, B11, P1); strassen(newSize, A12, B21, P2); strassen(newSize, A11, B12, P3); strassen(newSize, A12, B22, P4); strassen(newSize, A21, B11, P5); strassen(newSize, A22, B21, P6); strassen(newSize, A21, B12, P7); for (i = 0; i < newSize; i++) { for (j = 0; j < newSize; j++) { C11[i][j] = P1[i][j] + P4[i][j] - P5[i][j] + P7[i][j]; C12[i][j] = P3[i][j] + P5[i][j]; C21[i][j] = P2[i][j] + P4[i][j]; C22[i][j] = P1[i][j] + P3[i][j] - P2[i][j] + P6[i][j]; C[i][j] = C11[i][j]; C[i][j + newSize] = C12[i][j]; C[i + newSize][j] = C21[i][j]; C[i + newSize][j + newSize] = C22[i][j]; } } } } int main() { int n = 4; // 矩阵维数 int A[][4] = {{1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 12}, {13, 14, 15, 16}}; int B[][4] = {{17, 18, 19, 20}, {21, 22, 23, 24}, {25, 26, 27, 28}, {29, 30, 31, 32}}; int C[4][4]; strassen(n, A, B, C); int i, j; for (i = 0; i < n; i++) { for (j = 0; j < n; j++) { printf("%d ", C[i][j]); } printf("\n"); } return 0; } ``` 以上是一个简单的C语言实现的Strassen矩阵乘法算法。在此例子中,我们使用了一个4x4的矩阵作为输入,并打印出计算结果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值