Spark 学习笔记----高级编程之基于排序机制的wordcount程序

1、案例需求

(1)对文本文件内的内阁单词都统计出其出现的次数
(2)按照每个单词出现次数的数量,降序排序

2、实战开发
  • java版本
/**
 * 排序的wordcount程序
 *
 */
public class SortWordCount {
    public static void main(String[] args) {
        //创建SparkConf和JavaSparkContext
        SparkConf conf = new SparkConf().setAppName("SortWordCount").setMaster("local");
        JavaSparkContext sc = new JavaSparkContext(conf);

        //创建linesRDD
        JavaRDD<String> lines = sc.textFile("./spark.txt");

        //执行之前做过的单词计数,即不排序
        JavaRDD<String> words = lines.flatMap(new FlatMapFunction<String, String>() {

            public Iterator<String> call(String t) throws Exception {
                return Arrays.asList(t.split(" ")).iterator();
            }
        });

        JavaPairRDD<String, Integer> pairs = words.mapToPair(new PairFunction<String, String, Integer>() {
            public Tuple2<String, Integer> call(String s) throws Exception {
                return new Tuple2<String, Integer>(s, 1);
            }
        });

        JavaPairRDD<String,Integer> wordCounts = pairs.reduceByKey(new Function2<Integer, Integer, Integer>() {
            public Integer call(Integer v1, Integer v2) throws Exception {
                return v1 + v2;
            }
        });
        //到这里为止,就得到了每个单词出现的次数
        //但新需求是按照每个单词出现次数的顺序降序排序
        //wordCount RDD 内的元素是这种格式的:(hello,3) (you,2)
        //需要将RDD转化成(3,hello)(2,you),才能根据单词出现的次数进行排序

        //进行key-value的反转映射
        JavaPairRDD<Integer, String> countWords = wordCounts.mapToPair(new PairFunction<Tuple2<String, Integer>, Integer, String>() {
            public Tuple2<Integer, String> call(Tuple2<String, Integer> t) throws Exception {
                return new Tuple2<Integer, String>(t._2, t._1);
            }
        });

        //按照key进行排序
        JavaPairRDD<Integer, String> sortedCountWords = countWords.sortByKey(false);

        //再次将value-key进行反转映射
        JavaPairRDD<String, Integer> sortedWordsCount = sortedCountWords.mapToPair(new PairFunction<Tuple2<Integer, String>, String, Integer>() {

            public Tuple2<String, Integer> call(Tuple2<Integer, String> t) throws Exception {
                return new Tuple2<String, Integer>(t._2, t._1);
            }
        });

        //到此为止,获得了按照单词出现次数排序后的单词技术
        //打印结果
        sortedWordsCount.foreach(new VoidFunction<Tuple2<String, Integer>>() {
            public void call(Tuple2<String, Integer> t) throws Exception {
                System.out.println(t._1 + " appears " + t._2 + " times " );
            }
        });

        //关闭JavaSparkContext
        sc.close();

    }
}
  • scala版本
object SortWordCount_scala {
  def main(args: Array[String]): Unit = {
    val conf = new SparkConf().setAppName("SortWordCount_scala").setMaster("local")
    val sc  = new SparkContext(conf)

    val lines = sc.textFile("./spark")

    val words = lines.flatMap(line => line.split(" "))
    val pairs = words.map(word => (word,1))

    val wordCounts = pairs.reduceByKey(_ + _)

    val countWords = wordCounts.map(wordCount => (wordCount._2,wordCount._1))

    val sortedCountWords = countWords.sortByKey(false)

    val sortedWordsCount = sortedCountWords.map(sortedCountWord => (sortedCountWord._2,sortedCountWord._1))


    sortedWordsCount.foreach(sortedWordsCount => println(sortedWordsCount._1 + " appears " + sortedWordsCount._2 + "times"))

    
  }

本文为北风网Spark2.0培训视频的学习笔记
视频链接:
https://www.bilibili.com/video/av19995678?p=53

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值