1、使用jdbc数据源
Spark SQL支持使用JDBC从关系型数据库中读取数据。读取的数据又DataFrame表示,可以很方便地使用Spark Core提供的各种算子进行处理。
- java版本
Map<String,String> options = new HashMap<String,String>();
options.put("url","jdbc:mysql://spark1:3306/testdb");
options.put("dbtable","students");
DataFrame jdbcDF = sqlContext.read().format("jdbc").options(options).load();
- scala版本
val jdbcDF = sqlContext.read.format("jdbc").options(
Map("url" -> "jdbc:mysql://spark1:3306/testdb",
"dbtable" -> "students")).load()
2、实践:查询分数大于80分的学生信息
package pz.spark.study.sql;
import org.apache.spark.SparkConf;
import org.apache.spark.api.java.JavaPairRDD;
import org.apache.spark.api.java.JavaRDD;
import org.apache.spark.api.java.JavaSparkContext;
import org.apache.spark.api.java.function.Function;
import org.apache.spark.api.java.function.PairFunction;
import org.apache.spark.api.java.function.VoidFunction;
import org.apache.spark.sql.Dataset;
import org.apache.spark.sql.Row;
import org.apache.spark.sql.RowFactory;
import org.apache.spark.sql.SQLContext;
import org.apache.spark.sql.types.DataTypes;
import org.apache.spark.sql.types.StructField;
import org.apache.spark.sql.types.StructType;
import scala.Tuple2;
import java.sql.Connection;
import java.sql.DriverManager;
import java.sql.Statement;
import java.sql.Struct;
import java.util.ArrayList;
import java.util.HashMap;
import java.util.List;
import java.util.Map;
public class JDBCDataSource {
public static void main(String[] args) {
SparkConf conf = new SparkConf().setAppName("JDBCDataSource").setMaster("local");
JavaSparkContext sc = new JavaSparkContext(conf);
SQLContext sqlContext = new SQLContext(sc);
//分别将mysql中两张表的数据加载为DataFrame
Map<String, String> options = new HashMap<String, String>();
options.put("url", "jdbc:mysql://spark1:3306/testdb");
options.put("dbtable", "student_infos");
Dataset<Row> studentInfosDF = sqlContext.read().format("jdbc").options(options).load();
options.clear();
options.put("url", "jdbc:mysql://spark1:3306/testdb");
options.put("dbtable", "student_scores");
Dataset<Row> studentScoresDF = sqlContext.read().format("jdbc").options(options).load();
//将两个DataFrame转换为JavaPairRDD,执行join操作
JavaPairRDD<String, Tuple2<Integer, Integer>> studentsRDD = studentInfosDF.javaRDD().mapToPair(new PairFunction<Row, String, Integer>() {
@Override
public Tuple2<String, Integer> call(Row row) throws Exception {
return new Tuple2<String, Integer>(row.getString(0), Integer.valueOf(String.valueOf(row.get(1))));
}
}).join(studentScoresDF.javaRDD().mapToPair(new PairFunction<Row, String, Integer>() {
@Override
public Tuple2<String, Integer> call(Row row) throws Exception {
return new Tuple2<String, Integer>(String.valueOf(row.get(0)), Integer.valueOf(String.valueOf(row.get(1))));
}
}));
//将JavaPairRDD转换为JavaRDD<Row>
JavaRDD<Row> studentRowsRDD = studentsRDD.map(new Function<Tuple2<String, Tuple2<Integer, Integer>>, Row>() {
@Override
public Row call(Tuple2<String, Tuple2<Integer, Integer>> stringTuple2Tuple2) throws Exception {
return RowFactory.create(stringTuple2Tuple2._1, stringTuple2Tuple2._2._1, stringTuple2Tuple2._2._2);
}
});
//过滤出分数>80分的数据
JavaRDD<Row> filteredStudentRowsRDD = studentRowsRDD.filter(new Function<Row, Boolean>() {
@Override
public Boolean call(Row row) throws Exception {
if (row.getInt(2) > 80) {
return true;
} else {
return false;
}
}
});
//转换为DataFrame
List<StructField> structFields = new ArrayList<StructField>();
structFields.add(DataTypes.createStructField("name",DataTypes.StringType,true));
structFields.add(DataTypes.createStructField("age",DataTypes.IntegerType,true));
structFields.add(DataTypes.createStructField("score",DataTypes.IntegerType,true));
StructType structType = DataTypes.createStructType(structFields);
Dataset<Row> studentsDF = sqlContext.createDataFrame(filteredStudentRowsRDD, structType);
Row[] rows = studentsDF.collect();
for (Row row :rows) {
System.out.println(row);
}
//将DataFrame中的数据保存到mysql表中
/*options.put("dbtable", "good_student_infos");
studentsDF.write().format("jdbc").options(options).save();*/
//这种方式是企业中较常用的,有可能是插入mysql\hbase\redis缓存
studentsDF.javaRDD().foreach(new VoidFunction<Row>() {
@Override
public void call(Row row) throws Exception {
String sql = "insert into good_student_infos values("
+"'" + String.valueOf(row.getString(0)) + "',"
+Integer.valueOf(String.valueOf(row.get(1)))+ ","
+Integer.valueOf(String.valueOf(2)) + ")";
Class.forName("com.mysql.jdbc.Driver");
Connection conn = null;
Statement stmt = null;
try{
conn = DriverManager.getConnection("jdbc:mysql://spark1:3306/testb","","");
stmt = conn.createStatement();
stmt.executeUpdate(sql);
}catch(Exception e){
e.printStackTrace();
}finally{
if(stmt != null){
stmt.close();
}
if(conn != null){
conn.close();
}
}
}
});
sc.close();
}
}
3、 总结:jdbc数据源的使用
- 首先是通过SQLContext的read系列方法, 将mysql中的数据加载为DataFrame;
- 然后可以将DataFrame转换为RDD,使用Spark Core提供的各种算子进行操作
- 最后可以将得到的数据结果,通过foreach()算子,写入mysql\hbase等
本文为北风网Spark2.0培训视频的学习笔记
视频链接:
https://www.bilibili.com/video/av19995678/?p=113

866

被折叠的 条评论
为什么被折叠?



