有向图的邻接矩阵存储根计算

版权声明:未经博主允许不能转载文章 https://blog.csdn.net/weixin_42103959/article/details/80696558
若有向图中存在一个顶点v,从v可以通过路径到达图中其他所有顶点,那么称v为该有向图的根。假设图G采用邻接矩阵存储,求有向图的所有根。

输入

第一行为一个整数n,表示顶点的个数(顶点编号为0到n-1),接下来是为一个n*n大小的整数矩阵,表示图的邻接关系。

输出

有向图的所有根。

样例输入

0 1 0 0 0 
0 0 1 1 0 
0 0 0 1 0 
1 0 0 0 1 
1 0 0 0 0

样例输出

01234
#include<iostream>
#include<string.h>
using namespace std;
#define maxsize 105
int a[maxsize][maxsize];
int visted[105];
  
void findH(int v,int n)
{
    int i;
    visted[v] = 1;
    for (i = 0; i < n; i++)
    {
        if (a[v][i] == 1 && visted[i] == 0)findH(i,n);
    }
}
  
int main()
{
    int n, i, j;
    cin >> n;
    for (i = 0; i < n; i++)
    {
        for (j = 0; j < n; j++)
        {
            cin >> a[i][j];
        }
    }
    for (i = 0; i < n; i++)
    {
        memset(visted, 0, sizeof(visted));
        findH(i,n);
        for (j = 0; j < n; j++)
        {
            if (visted[j] == 0)break;
        }
        if (j == n)cout << i;
    }
    //system("pause");
    return 0;
}


阅读更多
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页