mysql相似图片搜索,图像处理基础(一)-OpenCV相似度匹配

图像处理基础,等大小图片相似度匹配

基于RGB通道的像素点相似度匹配算法思路

b4cdbc497064b289643a301a7d87b5cf.gif

def compare_by_RGB(image_1,image_2):

"""

基于通道和的差

:param image_1:

:param image_2:

:return:

"""

G_1 = 0

B_1 = 0

R_1 = 0

G_2 = 0

B_2 = 0

R_2 = 0

#第一个图像矩阵通道和

for x in image_1:

for y in x:

G_1 += y[0]

B_1 += y[1]

R_1 += y[2]

#第二个图像矩阵通道和

for x in image_2:

for y in x:

G_2 += y[0]

B_2 += y[1]

R_2 += y[2]

#图像矩阵各通道相似度

inc_G = 1 - math.fabs(G_1 - G_2) / G_2

inc_B = 1 - math.fabs(B_1 - B_2) / B_2

inc_R = 1 - math.fabs(R_1 - R_2) / R_2

dec = (inc_G + inc_B + inc_R) / 3

return dec

根据不相似的像素点统计

def compare_by_pixe(pic1, pic2):

"""

方法二,基于像素点相似数量统计

:param pic1:

:param pic2:

:return:totlepix 像素点个数,diffcount 相似度 ,nptg,ptg

"""

res={}

#获取行数列数和通道数

sp1 = pic1.shape

sp2 = pic2.shape

#获取矩阵大小

res['totlepix'] = pic1.size # pix*3 矩阵大小等于像素点数乘以3

#判断两张图片的行列数是否相同

if sp1 != sp2:

ret = "The two picture is in Different range"

return ret

DiffCount = 0

#遍历矩阵行和列

for index1 in range(sp1[0]):

for index2 in range(sp1[1]):

(b1, g1, r1) = pic1[index1, index2]

(b2, g2, r2) = pic2[index1, index2]

if (b1, g1, r1) != (b2, g2, r2):

DiffCount = DiffCount + 1

res['totlepix'] = res['totlepix'] / 3

#相似度=不同的像素点数/像素点总数

res['diffcount'] =1- DiffCount/ res['totlepix']

return res

主函数测试

if __name__=="__main__":

#相似度阈值

threshold_value=0.75

path="./lab1_data/lab1_video.mp4"

cap=cv2.VideoCapture(path)

count=0

if cap.isOpened():

#锁,用来判断是否为第一帧

flag=False

while 1:

ret,frame=cap.read()

#缩小图片

image=cv2.resize(frame,(32,32),interpolation=cv2.INTER_CUBIC)

if flag==True:

res=compare_by_pixe(image, temp)

if res["diffcount"]

cv2.imwrite("./lab1_save_data/"+str(count)+".jpg",frame)

count += 1

#记录当前帧

temp=image

if flag==False:

flag=True

temp=image

cv2.imshow("image",frame)

if cv2.waitKey(10)=='q':

break

cv2.destroyAllWindows()

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值