微分方程_常微分方程:线性微分方程解的三个重要特征

本文深入探讨了一阶线性微分方程解的三个关键特征,包括通解结构、特定解与齐次解的关系,以及初值问题的唯一解性质。通过跳伞员下落的物理模型,解释了如何运用线性微分方程解决实际问题,展示了线性微分方程解相对于非线性方程在结构上的优势。
摘要由CSDN通过智能技术生成

前一篇《带你走进微积分的堂学习:一阶线性微分方程式的基础原理》详细讨论了线性微分方程的结构以及通解特性,本篇我们借此机会指出一阶线性微分方程解的三个重要特征

1)有一阶线性微分方程

d82e3cce7796fef1c3ed5a648e1d3576.png

的通解是

f030db431b9412715eb41db08b48637d.png

可以看出,它等于(1)的一个特解(对应于上式的C=0)再加相应的齐次线性(2)的通解,

1d7278c2959087ed2382c1d4f4a7cb5b.png

因此如果求得非齐次线性微分方程(1)的一个特解为y=φ1(x)和相应的齐次线性方程(2)的通解,则(1)的通解为

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值