面试题解

谈谈对线程池的理解?如何创建线程池?java.util.concurrent包中提供了哪几种线程池?分别说明。

	线程池就是首先创建一些线程,这些线程的集合被称之为线程池。线程池可以很大程度上的提高工作效率。在java中使用ThreadPoolExetor 来创建线程池。在使用线程池以后,程序会将一个任务交给线程,当任务结束后,线程会回到线程池中,而不是将线程销毁。
	线程池的工作机制:
	1:在处于线程池工作模式下,会首先创建一些线程,而这些线程的集合就被称之为线程池,系统在执行任务的时候,不会将任务交给线程,而是交给线程池,线程池会掉用莫格空闲的线程
	2:线程池和线程一样拥有自己的状态,首先线程池会创建一个volilate变量,用来ilu线程池的工作状态。线程池有四种工作状态:running,stop,shutdomn,tearmnated;
	3:线程池在创建的时候会处于running状态。
	4:在执行shutdomn命令后,线程池不能接受新的线程,会等待缓冲队列的执行。
	5:  在执行shutdomnnow的时候,线程池会处于stop状态,线程不能执行新的任务,并且尝试终止正在执行的线程,
	6:在线程池处于shutdomn或者stop的情况下的时候,并且所有的工作线程已经销毁,或者任务缓存队列已经清空的情况下,线程池会处于streamNated状态。
	缓存队列:有三种。
队列简单解释
SynchrousQueue不会保存提交任务,超出直接corePoolSize个任务,直接创建新的线程来执行任务,直到(corePoolSize+新建线程)> maximumPoolSize。不是核心线程就是新建线程
LinkedBlockingQueue基于链表的先进先出,无界队列。超出直接corePoolSize个任务,则加入到该队列中,直到资源耗尽,所以maximumPoolSize不起作用
ArrayBlockingQueue基于数组的先进先出,创建时必须指定大小,超出直接corePoolSize个任务,则加入到该队列中,只能加该queue设置的大小,其余的任务则创建线程,直到(corePoolSize+新建线程)> maximumPoolSize
缓存队列的作用:当线程池的线程不够处理任务的时候,会将任务放在队列中,起到一个缓存的作用。
常用的线程池有四种:
	newCacheThreadPool:
	newFixedThreadPool;
	newScheduledThreadPool;
	newSingleThreadPool;

2:1. 请描述Comparable 和 Comparator 接口?列出它们的区别。

AI实战-学生生活方式模式数据集分析预测实例(含24个源代码+69.54 KB完整的数据集) 代码手工整理,无语法错误,可运行。 包括:24个代码,共149.89 KB;数据大小:1个文件共69.54 KB。 使用到的模块: pandas os matplotlib.pyplot seaborn plotly.express warnings sklearn.model_selection.StratifiedShuffleSplit sklearn.pipeline.Pipeline sklearn.compose.ColumnTransformer sklearn.impute.SimpleImputer sklearn.preprocessing.OrdinalEncoder numpy sklearn.model_selection.cross_val_score sklearn.linear_model.LinearRegression sklearn.metrics.mean_squared_error sklearn.tree.DecisionTreeRegressor sklearn.ensemble.RandomForestRegressor sklearn.model_selection.train_test_split sklearn.preprocessing.PowerTransformer imblearn.pipeline.Pipeline imblearn.over_sampling.SMOTE sklearn.ensemble.AdaBoostClassifier sklearn.metrics.accuracy_score sklearn.metrics.precision_score sklearn.metrics.recall_score sklearn.metrics.f1_score optuna scipy.stats torch torch.nn torchvision.transforms torchvision.models torch.optim cv2 glob glob.glob torch.utils.data.DataLoader torch.utils.data.Dataset random.shuffle torch.utils.data.random_split torchsummary.summary matplotlib.ticker pyspark.sql.SparkSession pyspark.sql.functions.count pyspark.sql.functions.max pyspark.sql.functions.min pyspark.sql.functions.avg pyspark.sql.functions.stddev_samp pyspark.sql.functions.skewness pyspark.sql.functions.kurtosis pyspark.sql.functions pyspark.ml.feature.Tokenizer pyspark.ml.feature.VectorAssembler sklearn.preprocessing.LabelEncoder keras.models.Sequential keras.layers.Dense keras.utils.to_categorical ptitprince statsmodels.distributions.empirical_distribution.ECDF statsmodels.stats.outliers_influence.variance_inflation_factor ppscore sklearn.feature_selection.mutual_info_classif sklearn.decomposition.PCA sklearn.model_selection.StratifiedKFold sklearn.tree.DecisionTreeClassifier sklearn.metrics.balanced_accuracy_score sklearn.metrics.confusion_matrix mlxtend.plotting.plot_confusion_matrix scipy.stats.pearsonr scipy.stats.f_oneway sklearn.feature_selection.mutual_info_regression sklearn.feature_selecti
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值