我覺得這個問題相當有趣,做為一個 Python 狂熱者,我不能同意 @garry_qian 的答案更多了,既然 Python 都提供了那麼好用的標準庫,不使用一下實在是太可惜了,在此立場下,一個 簡潔,簡短 (好啦並沒有...),但邏輯上基本相同的做法如下:
>>> s = 'abc'
>>> results = sorted([''.join(c) for l in range(len(s)) for c in permutations(s, l+1)])
['a', 'b', 'c', 'ab', 'ac', 'ba', 'bc', 'ca', 'cb', 'abc', 'acb', 'bac', 'bca', 'cab', 'cba']
這個寫法沒什麼特別的,不過是使用兩個 for 的 list comprehension 罷了。
同時,它回傳的是一個 string 的 list,與原題目比較接近。
但是這激發了我的一些好奇心,想自己來寫寫看,同時以沒有這些排列組合工具的他種語言來說,也許比較容易利用相同的邏輯來完成。
首先我完成的是關於組合的 function,他代入一個字串並且回傳所有長度的所有字元組合,但不排列:
def get_combinations(string):
combs = []
for i in range(1, 2**len(string)):
pat = "{0:b}".format(i).zfill(len(string))
combs.append(''.join(c for c, b in zip(string, pat) if int(b)))
return combs
測試:
>>> print get_combinations('abc')
['c', 'b', 'bc', 'a', 'ac', 'ab', 'abc']
一如預期,我們拿到:
長度為 1 的 'c', 'b', 'a'
長度為 2 的 'bc', 'ac', 'ab'
長度為 3 的 'abc'
果然是各種長度下的所有組合都到手了。
這個寫法肯定不是最好的,但我覺得想法滿有趣的。想法就是,要考慮 'abc' 的所有組合,那不就是分別考慮 a 要不要取,b 要不要取 和 c 要不要取,於是總共 2*2*2 = 8 (2**len(string)) 種組合,那不就正好對應到:
000 -> 都不取
001 -> 只取 c
010 -> 只取 b
011 -> 取 b c
100 -> 只取 a
101 -> 取 a c
110 -> 取 a b
111 -> 都取
所以在 get_combinations 中,用了一點技巧去生出從 1 到 7 的二進位碼,再根據 0 與 1 決定每一種組合該取用那些字元。
這還沒完成任務,我們距離標準答案,還必須取得:
每一種 組合 的所有 排列 情形
這產生了 get_permutations 這個 function:
def get_permutations(clst):
if len(clst)==1:
return [clst[0]]
results = []
for idx, c in enumerate(clst):
results += [c+substr for substr in get_permutations(clst[:idx] + clst[idx+1:])]
return results
測試:
>>> print get_permutations('abc')
['abc', 'acb', 'bac', 'bca', 'cab', 'cba']
邏輯很簡單,用 recursive 的方式去找出 固定長度字元組合 所有的排列。
有了以上兩種 function,我們就可以求出答案囉:
>>> [perm for comb in get_combinations('abc') for perm in get_permutations(list(comb))]
['c', 'b', 'bc', 'cb', 'a', 'ac', 'ca', 'ab', 'ba', 'abc', 'acb', 'bac', 'bca', 'cab', 'cba']
結論:
別重複發明輪胎,這不但累死你,還很顯笨
人生苦短,我用 Python