偏微分方程数值解的matlab程序,偏微分方程数值解法MATLAB源码

《偏微分方程数值解法MATLAB源码》由会员分享,可在线阅读,更多相关《偏微分方程数值解法MATLAB源码(27页珍藏版)》请在人人文库网上搜索。

1、源码【更新完毕】偏微分方程数值解法的MATLAB原创 说明:由于偏微分的程序都比较长,比其他的算法稍复杂一些,所以另开一贴,专门上传偏微分的程序 谢谢大家的支持! 其他的数值算法见:./Announce/Announce.asp?BoardID=209&id=8245004 、古典显式格式求解抛物型偏微分方程(一维热传导方程)1 function U x t=PDEParabolicClassicalExplicit(uX,uT,phi,psi1,psi2,M,N,C) %古典显式格式求解抛物型偏微分方程 %U x t=PDEParabolicClassicalExplicit(uX,uT,p。

2、hi,psi1,psi2,M,N,C) % %方程:u_t=C*u_xx 0 if r ) 不稳定 0.5, disp(r end 计算初值和边值%U=zeros(M+1,N+1); i=1:M+1 for U(i,1)=phi(x(i); end j=1:N+1 for U(1,j)=psi1(t(j); U(M+1,j)=psi2(t(j); end 逐层求解%j=1:N for i=2:M for U(i,j+1)=r*U(i-1,j)+r1*U(i,j)+r*U(i+1,j); end end U=U; %作出图形mesh(x,t,U); ) 古典显式格式,一维热传导方程的解的图像ti。

3、tle(x) xlabel(空间变量t) 时间变量 ylabel(U) zlabel(一维热传导方程的解 return; 古典显式格式不稳定情况2 / 16 古典显式格式稳定情况2、古典隐式格式求解抛物型偏微分方程(一维热传导方程) function U x t=PDEParabolicClassicalImplicit(uX,uT,phi,psi1,psi2,M,N,C) %古典隐式格式求解抛物型偏微分方程 %U x t=PDEParabolicClassicalImplicit(uX,uT,phi,psi1,psi2,M,N,C) % %方程:u_t=C*u_xx 0 1 if 13 / 。

4、16 ) 差分格式不稳定!,Lax-Friedrichs disp(|C*r|1 end 逐层求解 % j=1:N for i=2:M for U(i,j+1)=(U(i+1,j)+U(i-1,j)/2-C*r*(U(i+1,j)-U(i-1,j)/2; end end %Courant-Isaacson-Rees差分格式 CourantIsaacsonRees case C0 C*r1 if ) disp(Courant-Isaacson-Lees差分格式不稳定! end %逐层求解 j=1:N for i=2:M for U(i,j+1)=C*r*U(i-1,j)+(1-C*r)*U(i,。

5、j); end end end %Leap-Frog(蛙跳)差分格式 LeapFrog case psi2=); 请输入第二层初值条件函数: phi2=input( abs(C*r)1 if ) Leap-Frog差分格式不稳定! disp(|C*r|1, end %第二层初值条件 i=1:M+1 for U(i,2)=phi2(x(i); 14 / 16 end %逐层求解 j=2:N for i=2:M for U(i,j+1)=U(i,j-1)-C*r*(U(i+1,j)-U(i-1,j); end end 差分格式 %Lax-WendroffLaxWendroff case abs(C。

6、*r)1 if ) 差分格式不稳定!disp(|C*r|1,Lax-Wendroff end 逐层求解 % j=1:N for i=2:M for U(i,j+1)=U(i,j)-C*r*(U(i+1,j)-U(i-1,j)/2+C2*r2*(U(i+1,j)-2*U(i,j)+U(i-1,j)/2; end end %Crank-Nicolson隐式差分格式,需调用追赶法求解三对角线性方程组的算法 CrankNicolson case Diag=zeros(1,M-1);%矩阵的对角线元素 Low=zeros(1,M-2);%矩阵的下对角线元素 Up=zeros(1,M-2);%矩阵的上对角。

7、线元素 i=1:M-2 for Diag(i)=4; Low(i)=-r*C; Up(i)=r*C; end Diag(M-1)=4; B=zeros(M-1,M-1); i=1:M-2 for B(i,i)=4; B(i,i+1)=-r*C; B(i+1,i)=r*C; end B(M-1,M-1)=4; ) %逐层求解,需要使用追赶法(调用函数EqtsForwardAndBackward j=1:N for b1=zeros(M-1,1); b1(1)=r*C*(U(1,j+1)+U(1,j)/2; 15 / 16 b1(M-1)=-r*C*(U(M+1,j+1)+U(M+1,j)/2; b=B*U(2:M,j)+b1; U(2:M,j+1)=EqtsForwardAndBackward(Low,Diag,Up,b); end otherwise ) 差分格式类型输入有误! disp( return; end U=U; 作出图形%mesh(x,t,U); ); 格式求解一阶双曲型方程的解的图像title(type x); 空间变量 xlabel(t); ylabel(时间变量U); 一阶双曲型方程的解 zlabel( return; 16 / 16。

偏微分方程数值解法Matlab源码可以包含以下几个步骤: 1. 网格生成:首先需要生成一个合适的网格来表示空间域。使用函数`meshgrid`可以生成一个二维网格。例如,可以使用下面的语句生成一个大小为`N`的网格: ```matlab [x, y] = meshgrid(linspace(0, 1, N), linspace(0, 1, N)); ``` 2. 边界条件的初始化:根据问题的边界条件,需要初始化网格边界上的数值。例如,可以使用如下语句初始化边界条件: ```matlab u = zeros(N, N); u(:, 1) = g1(x(:, 1), y(:, 1)); u(:, N) = g2(x(:, N), y(:, N)); u(1, :) = g3(x(1, :), y(1, :)); u(N, :) = g4(x(N, :), y(N, :)); ``` 其中`g1`、`g2`、`g3`和`g4`是边界条件的函数。这些函数会根据输入的坐标生成相应的边界条件数值。 3. 算法迭代:根据所选择的偏微分方程数值方法进行迭代计算。这里以有限差分法为例,计算过程中需要使用迭代步长`dt`和空间步长`dx`。例如,可以使用以下语句进行迭代计算: ```matlab for i = 2:N-1 for j = 2:N-1 u(i, j) = u(i, j) + dt/(dx^2) * (u(i+1, j) + u(i-1, j) + u(i, j+1) + u(i, j-1) - 4*u(i, j)); end end ``` 这个嵌套循环会对内部网格点进行更新,其中的迭代公式根据数值解法不同而有所差异。 4. 结果可视化:最后,使用Matlab的绘图功能将计算结果可视化。例如,可以使用下面的语句绘制计算得到的的三维图形: ```matlab surf(x, y, u); ``` 或者使用以下语句绘制等高线图: ```matlab contourf(x, y, u); ``` 这些语句会根据给定的网格和计算结果绘制相应的图形。 以上是一个简单的演示偏微分方程数值解法Matlab源码。实际上,根据具体的偏微分方程数值解法不同,源码会有所差异。因此,这只是一个基本的框架,具体实现需要根据问题而定。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值