suse linux下交叉编译,阐述SUSE 10.1交叉编译环境构建方法

本文介绍了如何避免繁琐的crosstool工具链编译,提供了一种简化的方法,包括从共享目录复制预编译的GCC包、环境变量设置、路径添加等步骤,适用于初学者。通过实例验证了环境配置的有效性,助您轻松构建嵌入式开发环境。
摘要由CSDN通过智能技术生成

现在很多的人都在应用SUSE,伴随着的问题也随之出现,我学习SUSE也有很长时间了,也有些小的心得体会。在这里和大家分享一下,今天所要说的是SUSE 10.1交叉编译环境构建问题。crosstool制作工具的链的方法很好,但是很浪费时间,因为编译一次要数个小时,很是麻烦,也不适合初学者,下面介绍另一种SUSE 10.1交叉编译环境构建方法。

1.复制arm-linux-gcc-3.4.1.tar.bz2到“/”目录 cp /mnt/hgfs/linux_tmp/arm-linux-gcc-3.4.1.tar.bz2  / /mnt/hgfs/linux_tmp/是我的虚拟机和windows共享的目录,关于怎样和虚拟机共享文件,大家可以参考我的另一篇博文。

2.解压 arm-linux-gcc-3.4.1.tar.bz2 #tar -jxvf arm-linux-gcc-3.4.1.tar.bz2

解压过程需要一段时间,解压后的文件形成了 usr/local/arm/3.4.1/bin 文件夹,进入该文件夹

现在交叉编译程序集都在/usr/local/arm/3.4.1/bin下面了

3.修改环境变量,把交叉编译器的路径加入到PATH。

修改的目的:系统默认的gcc编译器是arm-linux-gcc而不是gcc了,这点要认识清楚

修改/etc/bash.bashrc文件 #vim /etc/bash.bashrc

在最后加上: export PATH=$PATH:/usr/local/arm/3.4.1/bin export PATH

4.立即使新的环境变量生效,不用重启电脑: #source /etc/bash.bashrc

5. 检查是否将路径加入到PATH: # echo $PATH

显示的内容中有/usr/local/arm/bin,说明已经将交叉编译器的路径加入PATH。至此,交叉编译环境安装完成。

6.测试是否安装成功  mengyang:/ # arm-linux-gcc -v

上面的命令会显示arm-linux-gcc信息和版本,这是我显示的信息: mengyang:/ # arm-linux-gcc -v Reading specs from /usr/local/arm/3.4.1/lib/gcc/arm-linux/3.4.1/specs Configured with:   /work/crosstool-0.27/build/arm-linux/gcc-3.4.1-glibc-2.3.2/gcc-3.4.1/configure  --target=arm-linux  --host=i686-host_pc-  linux-gnu  --prefix=/usr/local/arm/3.4.1  --with-headers=/usr/local/arm/3.4.1/arm-linux/include  --with-local-  prefix=/usr/local/arm/3.4.1/arm-linux  --disable-nls  --enable-threads=posix  --enable-symvers=gnu  --enable-__cxa_atexit  --enable-languages=c,c++  --enable-shared  --enable-c99  --enable-long-long Thread model: posix gcc version 3.4.1

7.编译Hello World程序,测试交叉工具链

写下下面的Hello World程序,保存为 hello.c  #include int main(void) { printf("Hello Arm Linux Gcc!\n"); return 0; }

执行下面的命令: # arm-linux-gcc -o hello hello.c

有时会有如下的警告: warning: no newline at end of file

英文的意思就是说文末没有换行符。Unix文档的回车换行符是一个字符\n,Windows的是分别的两个\n\r,所以你在Windows下编辑的最后一个字符是\r不是\n,所以编译器以为有错误。在文件最后补一个新行即可。

源程序有错误的话会有提示,没有任何提示的话,就是通过了,就可以下载到ARM目标板上运行了!

接着可以输入file hello的命令,查看生成的hello文件的类型,要注意的是生成的可执行文件只能在ARM体系下运行,不能在其于X86的PC机上运行。

想要在PC机linux上运行,只需执行如下命令: gcc hello.c -o hello ./hello

显示打印结果,至此嵌入式的开发环境搭建完毕,这样我们就可以轻松的应用了。希望本文会对大家的学习有帮助!

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
图像识别技术在病虫害检测中的应用是一个快速发展的领域,它结合了计算机视觉和机器学习算法来自动识别和分类植物上的病虫害。以下是这一技术的一些关键步骤和组成部分: 1. **数据收集**:首先需要收集大量的植物图像数据,这些数据包括健康植物的图像以及受不同病虫害影响的植物图像。 2. **图像预处理**:对收集到的图像进行处理,以提高后续分析的准确性。这可能包括调整亮度、对比度、去噪、裁剪、缩放等。 3. **特征提取**:从图像中提取有助于识别病虫害的特征。这些特征可能包括颜色、纹理、形状、边缘等。 4. **模型训练**:使用机器学习算法(如支持向量机、随机森林、卷积神经网络等)来训练模型。训练过程中,算法会学习如何根据提取的特征来识别不同的病虫害。 5. **模型验证和测试**:在独立的测试集上验证模型的性能,以确保其准确性和泛化能力。 6. **部署和应用**:将训练好的模型部署到实际的病虫害检测系统中,可以是移动应用、网页服务或集成到智能农业设备中。 7. **实时监测**:在实际应用中,系统可以实时接收植物图像,并快速给出病虫害的检测结果。 8. **持续学习**:随着时间的推移,系统可以不断学习新的病虫害样本,以提高其识别能力。 9. **用户界面**:为了方便用户使用,通常会有一个用户友好的界面,显示检测结果,并提供进一步的指导或建议。 这项技术的优势在于它可以快速、准确地识别出病虫害,甚至在早期阶段就能发现问题,从而及时采取措施。此外,它还可以减少对化学农药的依赖,支持可持续农业发展。随着技术的不断进步,图像识别在病虫害检测中的应用将越来越广泛。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值