flink实时产生的数据流式写入到kafka中
import cn.itcast.day03.source.custom.MyNoParallelSource;
import cn.itcast.day03.source.custom.Order;
import org.apache.flink.api.common.functions.MapFunction;
import org.apache.flink.streaming.api.datastream.DataStreamSource;
import org.apache.flink.streaming.api.datastream.SingleOutputStreamOperator;
import org.apache.flink.streaming.api.environment.StreamExecutionEnvironment;
import org.apache.flink.streaming.connectors.kafka.FlinkKafkaProducer;

本文介绍了如何使用Apache Flink进行实时数据流处理,并将生成的数据流无缝写入Kafka topic,从而实现大数据的实时传输和存储。详细探讨了Flink的DataStream API和Kafka Connector的配置与使用。
最低0.47元/天 解锁文章
1332

被折叠的 条评论
为什么被折叠?



