风华正茂呀
码龄7年
关注
提问 私信
  • 博客:24,951
    24,951
    总访问量
  • 49
    原创
  • 2,218,117
    排名
  • 30
    粉丝
  • 0
    铁粉

个人简介:无

IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:江苏省
  • 加入CSDN时间: 2018-05-06
博客简介:

weixin_42149770的博客

博客描述:
新人上路
查看详细资料
个人成就
  • 获得35次点赞
  • 内容获得11次评论
  • 获得65次收藏
创作历程
  • 1篇
    2023年
  • 2篇
    2021年
  • 45篇
    2020年
  • 1篇
    2019年
成就勋章
TA的专栏
  • 前端框架及工具
    2篇
  • html+CSS学习日记
    9篇
  • cpu
  • 数学
    7篇
  • 数据库系统概论
    3篇
  • 数据结构
    1篇
  • JS学习日记
    24篇
  • 操作系统
    1篇
兴趣领域 设置
  • 编程语言
    c++
  • 数据结构与算法
    数据结构
  • 后端
    分布式
  • 嵌入式
    stm32嵌入式硬件
创作活动更多

2024 博客之星年度评选报名已开启

博主的专属年度盛宴,一年仅有一次!MAC mini、大疆无人机、华为手表等精美奖品等你来拿!

去参加
  • 最近
  • 文章
  • 代码仓
  • 资源
  • 问答
  • 帖子
  • 视频
  • 课程
  • 关注/订阅/互动
  • 收藏
搜TA的内容
搜索 取消

cpu简述--指令集架构

2002年8月10日,中国科学院计算技术研究所的青年科学家胡伟武带领研制组,研制出我国首枚拥有自主知识产权的通用高性能微处理芯片——“龙芯一号”,结束了我国在通用CPU领域无芯片的历史。龙芯当时是做了什么样的创新,才能说是具有自主知识产权的芯片呢?为何2002年就已经有了自主知识产权的芯片,而到现在还致力于自主可控的国产cpu的开发?
原创
发布博客 2023.01.16 ·
3932 阅读 ·
4 点赞 ·
0 评论 ·
15 收藏

Mathematics for Machine Learning--学习笔记(仿射空间)

1.8 Affine Spaces (仿射空间)  在下面,我们将仔细观察从原点偏移的空间,即不再是向量子空间的空间。此外,我们将简要讨论这些仿射空间之间映射的性质,它们类似于线性映射。  注:在机器学习文献中,线性和仿射之间的区别有时并不清楚,因此我们可以将仿射空间/映射作为线性空间/映射的引用。1.8.1 Affine Subspaces(仿射子空间)  定义(仿射子空间):VVV是一个向量空间,x0∈V,U⊆Vx_0 \in V,U\subseteq Vx0​∈V,U⊆V是一个子空间。然后子集
原创
发布博客 2021.02.10 ·
1427 阅读 ·
5 点赞 ·
3 评论 ·
6 收藏

Mathematics for Machine Learning--学习笔记(线性映射)

1.7 Linear Mappings(线性映射)
原创
发布博客 2021.02.10 ·
1028 阅读 ·
4 点赞 ·
1 评论 ·
5 收藏

操作系统实验报告-添加内核模块

发布资源 2020.12.24 ·
doc

Mathematics for Machine Learning--学习笔记(基和秩)

1.6 Basis and Rank(基和秩)  在一个向量空间中有一组向量a的集合可以通过他的线性组合表示这个空间中所有的向量,接下来我们就是讨论这种向量1.6.1 Generating Set and Basis(生成集和基)  假设一个向量空间V,以及一组向量的集合A。如果V中的每个向量都可以由A中向量的线性组合所表示。A就是V的生成集。A中向量的所有线性组合组成的集合叫做A张成的空间,记作V=span[A]  每个向量都可以表示为生成集中向量的线性组合,接下来我们具体讨论张成向量空间的最小生
原创
发布博客 2020.11.27 ·
1072 阅读 ·
1 点赞 ·
0 评论 ·
2 收藏

Mathematics for Machine Learning--学习笔记(线性无关)

1.5 Linear Independence(线性无关)  接下来就要学习如何处理向量了。首先,我们先介绍线性组合和线性无关的概念。Linear Combination(线性组合):存在一个向量空间V和有限的x1,⋯ ,xk∈Vx_1,\cdots,x_k\in Vx1​,⋯,xk​∈V.每一个元素vvv都有如下形式:v=λ1x1+⋯+λkxk=∑i=1kλixi∈Vv=\lambda_1 x_1+\cdots+\lambda_k x_k=\sum_{i = 1}^{k} {\lambda_i x_i
原创
发布博客 2020.11.25 ·
605 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Mathematics for Machine Learning--学习笔记(向量空间)

1.4 Vector Spaces(向量空间)  在之前我们已经了解了线性方程组并知道了怎么解他们。也知道线性方程组能够用矩阵形式表示,接下来我们主要要就向量所在的结构空间。  在第一篇博客,我们简单介绍了什么是向量。接下来将它形式化,我们首先来介绍群1.4.1 Groups(群)  群在计算机中很重要。除了提供对集合的操作的基本框架外,在密码学、编码理论和图形学中也被大量使用。  群的定义:我们设一个集合G,以及一个操作⊗,如果G满足一下几个特性,则(G,⊗)是一个群:封闭性: ∀x, y
原创
发布博客 2020.11.18 ·
432 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Mathematics for Machine Learning--学习笔记(解线性方程组)

1.3 Solving Systems of Linear Equations(解线性方程组)  之前我们已经学会了线性方程组的矩阵表示,并且定义了矩阵的加法乘法等运算。接下来咱们就致力于解线性方程组并且提供一个求逆矩阵的算法。1.3.1 Particular and General Solution(特解和通解)  研究特解通解之前啊,先举个栗子,说一下,这其中的关系。这本书还是很透彻的,之前一直没理解到位,这么一看就有一种拨开云雾见日明的感觉。[108−401212][x1x2x3x4]=[42
原创
发布博客 2020.10.29 ·
998 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

Mathematics for Machine Learning--学习笔记(线性代数篇1.1、1.2)

  老师上课在讲这个东西 奈何上课根本听不进去,又不想挂科,(主要是本英文书,奈何自己英文水平太差,上课看不懂,只能下课自己看咯)看都看了,顺带写写博客吧。一、Linear Algebra(线性代数)  我们一般学的向量都是“几何向量”, x⃗\vec{x}x, y⃗\vec{y}y​这样的。而这本书中讨论向量的一般概念,并用x,y来表示。  而从抽象的数学观点来看,只要是一个对象满足跟一个标量相乘或者同类型相加得到的结果,还是这个类型的对象的话,就可以说这个对象是一个向量。  举个栗子:两个空
原创
发布博客 2020.10.23 ·
463 阅读 ·
2 点赞 ·
0 评论 ·
2 收藏

第三章--关系数据库标准语言SQL(一)

一、SQL概述SQL的特点综合统一高度非过程化面向集合的操作方式以一同一种语法结构提供两种使用方法语言简洁,易学易用SQL功能动词数据定义CREATE,DROP,ALTER数据查询SELECT数据操纵INSERT,UPDATE,DELETE数据控制CRANT,REVOKESQL的操作涉及到模式和外模式,涉及不到内模式二、学生-课程数据库本章节用学生课程数据库为例讲解sql各种操作学生表:Student(Sno,Sname,Ssex
原创
发布博客 2020.05.14 ·
454 阅读 ·
0 点赞 ·
0 评论 ·
2 收藏

第二章--关系数据库

一、关系数据结构关系模型建立在集合代数的基础上关系数据结构的基本概念   关系   关系模式   关系数据库(一)关系域域是一组具有相同数据类型的值的集合   例:整数,实数,介于某个取值范围的整数,指定长度的字符串的集合,{“男”,“女”},介于某个取值范围的日期笛卡尔积   数学关系式就不说了,简单来说就是所有域的所有取值的一个集合(不能重复)例:D1={张青梅,刘毅},D2={计算机专业,信息专业},D3={李勇,
原创
发布博客 2020.05.12 ·
708 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

第一章--数据库系统基本概念(一)

一、四个基本概念(一)数据   数据(Data)是数据库中存储的基本对象,其含义成为数据的语义(二)数据库   数据库(Database)是长期储存在计算机内,有组织的,可共享的大量数据集合数据库的特征:数据按一定的数据模型组织,描述和储存可为各种用户共享冗余度较小数据独立性较高易扩展(三)数据库管理系统   数据库管理系统(DBMS)是位...
原创
发布博客 2020.05.09 ·
2564 阅读 ·
3 点赞 ·
0 评论 ·
8 收藏

数据结构--序章

闲来无事,正好看见考研时复习数据结构的王道书,说实话当时学的时候追求了速率,有些地方还是不求甚解,现在回想一下已经忘得七七八八了,只记得许多课后习题看完答案之后有种“卧槽,还能这么写?”这样的感叹,所以打算认真的更一下数据结构。绪论(一)数据结构三元素一般来讲呢,数据结构就三个要素,逻辑结构,存储结构,以及数据运算。也就是说一个算法,你设计的时候呢,是基于逻辑结构的,比如说树啊,图啊,线性表...
原创
发布博客 2020.04.27 ·
222 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

node.js初学--hello_world

emmmm…算是正式开始学习?今天只学了一点点,不过我还是决定把它写下来rt 第一个hello_world程序,安装什么的我就不写了…官网下载安装版一键式傻瓜安装var http = require('http');//引入http模块http.createServer(function (request,response){//初始化服务 if(request.url!=="/favi...
原创
发布博客 2020.04.24 ·
155 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

Node.js初学--了解node.js

概念打算学习一下node.js,本来应该是学完之后再说一说自己对这个东西的理解,但是吧,又觉得学之前先简单了解一下比较好 于是乎今天逛了半天网站,各种论坛,想搞清楚到底什么是node.js,他的特点在哪里,又是怎么实现这些特点的首先呢,node.js 是一个基于 Chrome V8 引擎的 JavaScirpt 运行环境。额这是网络上通常的书面语言,具体是什么意思呢,按照我的理解就是,他给js...
原创
发布博客 2020.04.20 ·
217 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

HTML5拖放api

Drag&Drop提供专门的拖拽与投放的API触发多个事件,可控制鼠标的形状与移动时的效果可以跨页面拖放draggable属性:true flase auto(设置这个元素是否可拖拽)拖拽事件–ondragstart,drag,dragend(拖拽开始进行结束)投放事件–dragenter,dragover,dragleave,dropdataTransfer对象–se...
原创
发布博客 2020.02.19 ·
227 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

CSS--立方体旋转

实现3d效果的正方体旋转效果rotate旋转3d场景设置 transform-style:persevere-3dperspective:px动画 写在@keyframesl里代码如下:<!DOCTYPE html><html> <head> <meta charset="utf-8"> <title>正方体&...
原创
发布博客 2020.02.19 ·
231 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

CSS实现loading效果

loading其实就是八个小圆球有规律的放大缩小,注意放大缩小的顺序就行了<!DOCTYPE html><html> <head> <meta charset="utf-8"> <title>londing</title> <style type="text/css"> *{ mar...
原创
发布博客 2020.02.18 ·
271 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏

2D和3D效果

一、2D效果1.CSS3过渡通过CSS3,我们可以在不使用Flash动画或JavaScript的情况下,当元素从一种样式变换为另一种样式时为元素添加效果要实现这一点,必须规定两项内容:规定希望把效果添加到哪个CSS属性上规定效果时长下面列出转换属性:属性描述transition简写属性,用于在一个属性中设置四个过渡属性transition-proper...
原创
发布博客 2020.02.17 ·
399 阅读 ·
0 点赞 ·
0 评论 ·
1 收藏

宽高自适应

宽高自适应网页布局中经常要定义元素的宽和高。但是很多时候我们希望元素的大小能够根据窗口或子元素自动调整,这就是自适应元素自适应在网页布局中非常重要,他能够使网页显示更加灵活,可以适应在不同设备、不同窗口和不同分辨率下显示1.宽度自适应元素宽度设置为100%(块元素宽度默认为100%)2.元素具备最小高度的自适应min-height属性:最小高度:可以让 内容少的时候仍然保持一定的高度...
原创
发布博客 2020.02.17 ·
204 阅读 ·
0 点赞 ·
0 评论 ·
0 收藏
加载更多