pytorch 反卷积 可视化_PyTorch中反卷积的用法详解

pytorch中的 2D 卷积层 和 2D 反卷积层 函数分别如下:

class torch.nn.Conv2d(in_channels, out_channels, kernel_size, stride=1, padding=0, groups=1, bias=True)

class torch.nn.ConvTranspose2d(in_channels, out_channels, kernel_size, stride=1, padding=0, output_padding=0, bias=True)

我不禁有疑问:

问题1: 两个函数的参数为什么几乎一致呢?

问题2: 反卷积层中的 output_padding是什么意思呢?

问题3: 反卷积层如何计算input和output的形状关系呢?

看了中文文档后,我得不出答案,看了英文文档,才弄明白了。花费了一个下午的时间去研究这个问题,值得用此文纪录一下。

我们知道,在卷积层中,输入输出的形状关系为:

o = [ (i + 2p - k)/s ] +1 (1)

其中:

O : 为 output size

i: 为 input size

p: 为 padding size

k: 为kernel size

s: 为 stride size

[] 为下取整运算

(1) 当 S=1 时

若 s等于1,则公式(1)中的取整符号消失,o 与 i 为 一一对应 的关系。 我们有结论:

如果卷积层函数和反卷积层函数的 kernel_size, padding size参数相同(且 stride= 1),设反卷基层的输入输出形状为 i" 和 o", 卷积层的输入输出形状i和o, 则它们为 交叉对应 的关系,即:

i = o"

o = i"

为回答问题3, 我们将上述关系代入公式中,即:

i" = o" + 2p - k +1

已知 i", 即可推出 o":

o" = i" - 2p + k - 1 (2)

摘两个例子:

(2) 当 S>1 时

若 S>1 , 则公式(1)中的取整符号不能消去,o 与 i 为 多对1 的关系。 效仿 S=1时的情形, 我们有结论:

如果卷积层函数和反卷积层函数的 kernel_size, padding size参数相同(且 stride>1),设反卷基层的输入输出形状为 i" 和 o", 卷积层的输入输出形状i和o,

i" = [ (o" + 2p - k)/s ] +1

已知 i", 我们可以得出 s 个 o" 解:

o"(0) = ( i" - 1) x s + k - 2p

o"(1) = o"(1) + 1

o"(2) = o"(1) + 2

...

o"(s-1) = o"(1) + s-1

即:

o"(n) =o"(1) + n = ( i" - 1) x s + k - 2p + n,

n = {0, 1, 2...s-1}

为了确定唯一的 o" 解, 我们用反卷积层函数中的ouput padding参数指定公式中的 n 值。这样,我们就回答了问题(2)。

摘一个简单的例子:

(3) 实验验证

给出一小段测试代码,改变各个参数值,运行比较来验证上面得出的结论,have fun~.

from torch import nn

from torch.nn import init

from torch.autograd import Variable

dconv = nn.ConvTranspose2d(in_channels=1, out_channels= 1, kernel_size=2, stride=2, padding=1,output_padding=0, bias= False)

init.constant(dconv.weight, 1)

print(dconv.weight)

input = Variable(torch.ones(1, 1, 2, 2))

print(input)

print(dconv(input))

以上这篇PyTorch中反卷积的用法详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持云海天教程。

表情包
插入表情
评论将由博主筛选后显示,对所有人可见 | 还能输入1000个字符
相关推荐
©️2020 CSDN 皮肤主题: 深蓝海洋 设计师:CSDN官方博客 返回首页