【阶段三】Python机器学习26篇:机器学习项目实战:LightGBM回归模型

本文介绍了一个使用LightGBM回归模型进行广告收益预测的项目实战。通过数据收集、预处理、探索性数据分析、特征工程,构建并优化模型,最终评估模型效果,得出模型具有较高预测准确性的结论。
摘要由CSDN通过智能技术生成

本篇的思维导图

 

项目实战(LightGBM回归模型)

项目背景


       为促进产品的销售,厂商经常会通过多个渠道投放广告。本案例将根据某公司在电视、广播和报纸上的广告投放数据预测广告收益,作为公司制定广告策略的重要参考依据。

本项目应用LightGBM回归算法进行项目实战,整体流程包括数据收集、数据预处理、探索性数据分析、特征工程、模型构建及优化、模型评估。


数据收集


本次建模数据来源于网络,数据项统计如下:


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

张陈亚

您的鼓励,将是我最大的坚持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值