本篇的思维导图:
项目实战(LightGBM回归模型)
项目背景
为促进产品的销售,厂商经常会通过多个渠道投放广告。本案例将根据某公司在电视、广播和报纸上的广告投放数据预测广告收益,作为公司制定广告策略的重要参考依据。
本项目应用LightGBM回归算法进行项目实战,整体流程包括数据收集、数据预处理、探索性数据分析、特征工程、模型构建及优化、模型评估。
数据收集
本次建模数据来源于网络,数据项统计如下:
【阶段三】Python机器学习26篇:机器学习项目实战:LightGBM回归模型
最新推荐文章于 2024-09-27 08:31:14 发布
本文介绍了一个使用LightGBM回归模型进行广告收益预测的项目实战。通过数据收集、预处理、探索性数据分析、特征工程,构建并优化模型,最终评估模型效果,得出模型具有较高预测准确性的结论。

订阅专栏 解锁全文

1116

被折叠的 条评论
为什么被折叠?



