论文笔记02——Joint Extraction of Entities and Relations Based on a Novel Decomposition Strategy[ECAI2020]

本文提出了一种新颖的方法,将联合实体识别和关系抽取分解为头实体(HE)抽取和尾关系(TER)抽取。通过基于跨度的标注,使用分层边界标记器(HBT)和多跨度解码,优化了任务处理。核心在于利用头实体信息简化关系和尾实体的抽取,通过分解大任务提升效率。
摘要由CSDN通过智能技术生成

Joint entity recognition and relation extraction as a multi-head selection problem

动机

1,解决抽取过程中大量冗余的实体对
2,利用实体对之间的相互关系

摘要

本文首先将联合抽取任务分解为HE抽取和TER抽取两个相互关联的子任务,前者是区分所有可能涉及目标关系的头实体,后者是为每个抽取的头实体识别对应的尾实体和关系。
然后,基于我们提出的基于跨度的标注方案,将这两个子任务进一步解构为几个序列标签问题,并通过分层边界标签器和多跨度解码算法方便地解决这些问题。

想法

1,抽取尾实体和关系时,头实体的信息会有帮助
2,对于一个大任务来讲,分解成小任务会效果更好
3,先抽取头实体,然后抽取关系和尾实体

Methodology

标注方案

对于头实体抽取,分为两个序列标注子任务,第一个识别头实体的起始位置,第二个识别头实体的结束位置.两者的区别在于实体的类型针对尾实体进行标注.
对于关系和尾实体抽取,也是分为两个序列标注任务,第一个标注关系类型为尾实体的起始位置,第二个标注关系类型的结束位置.(相当于进行关系类型的序列标注,然后对标注结果进行最近的合并.
如图:
在这里插入图片描述

分层边界标记器(HBT

抽取器封装起来的一个标记器,分两步进行,第一步是提取起始位置,第二步是提取结束位置.(两步在输入上有所区别和特征的扩充)
第一步:
在这里插入图片描述
hi是词向量表示,
ai是句子的向量表示
第二步:
在这里插入图片描述
pi是位置向量,相对位置生成.
如图:
在这里插入图片描述

提取系统

整体框架
在这里插入图片描述

HE模块

类比HBT
第一步:hi是经过Bi-LSTM的词向量表示,ai是hi的maxpool结果
第二步:一致
经过HE模块,可以得到头实体及其类型

TER模块

考虑到了头实体起始位置,头实体结束位置,关系表示,起始位置和结束位置的distance,提出了
在这里插入图片描述
其中h[h]是该实体起始位置和结束位置的拼接
pi[ht]是相对位置向量

损失函数

两个交叉熵函数之和:Lhe+ Lter

trick

技巧点就在于如何利用丰富的特征.

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值
>