论文精读(一)landsat时间序列变化检测

论文精读(一)
Change detection using landsat time series: A review of frequencies,preprocessing, algorithms, and applications (朱哲,2017)


文章原文[link]https://www.sciencedirect.com/science/article/pii/S092427161730103X
文章类别:综述

We present a comprehensive review of four important aspects of change detection studies based on Landsat time series, including frequencies, preprocessing, algorithms, and applications.
我们综述了基于陆地卫星时间序列的变化检测研究的四个重要方面,包括频率、预处理、算法和应用。

频率

A single Landsat satellite visits the same location in every 16 days, which means it can collect 22–23 images per year for a given location (without considering overlap areas).
一颗卫星 16天 1幅影像—1年22-23幅
The use of more frequent Landsat time series provides the possibility of detecting change at a much faster pace. The dense Landsat time series also provides the possibility of capturing the intra-annual seasonal changes, and this information can be very helpful for improving change detection accuracy.
更快的速度
年内季节变化的捕捉
更高精度

预处理

主要噪声源
1.太阳高度差异
2.植被物候变化引起的季节差异

预处理分为三类
Atmospheric correction
Cloud and cloud shadow detection
Composite, fusion, and metrics

预处理目的:To make sure the time series are well aligned

in 2016, the USGS EROS Center started reorganizing the Landsat archive into a formal tiered data Collection structure, which ensures that Landsat Level-1 products provides a consistent archive of known data quality (Tier 1, Tier 2, and Real-Time) to support time series analyses and data ‘‘stacking”.Highest available data quality Landsat images (image-to-image tolerances of <12 m RMSE; https://landsat.usgs.gov/landsatcollections) are placed into Tier 1 and are considered most suitable for time series analysis.

Atmospheric correction 大气校正

1:relative normalization 相对归一化
2:absolute correction 绝对校正

1:relative normalization 相对归一化

based on the relationship between seudo-invariant features from multi-date images
依据多时期的图像中的伪变化间的关系调整辐射量来和参考图像相同

2:absolute correction 绝对校正

a.empirical 经验方法

DOS(Dark Object Subtraction)方法
根据图像中的最暗值估计路径辐射,不考虑pixel-to-pixel variation。

b.physical-based 物理方法

ATCOR--------------Atmospheric/Topographic CORrection
MODTRAN---------MODerate resolution atmospheric TRANsmission
6S---------------------the Satellite Signal in the Solar Spectrum (6S) code
LEDAPS-------------the Landsat Ecosystem Disturbance Adaptive Processing System (LEDAPS) software 实现landsat4-7自动大气校正
L8SR-----------------类似于ledaps的进化版 适合Landsat8和landsat5-7

Cloud and cloud shadow detection 云、云阴影的检测

只存在于像元级 粗分辨率:如AVHRR MODIS
几乎没有任何运算算法能够在像素级提供云和云阴影掩膜。

ACCA(Automated Cloud Cover Assessment)
可以估计云量的百分比 但不能掩膜

2008年后,随着landsat数据的开放,云/云阴影检测算法开始发展,但大多都是基于单日期(single-data)影像的,精度不足。
同时,这些算法主要是服务于TM/ETM+的,很少有服务于OLI/TIRS/MSS的。

a.physical rules based

-Vermote and Saleous (2007)

  • 需要辅助数据,如借助地表温度(National Centers for Environmental Prediction,NCEP)缠上一个地表温度参考层来检测云。
  • 是LEDAPS的一部分
  • 服务于Landsat数据

-Vermote et al. (2016)

  • 借助cirrus band and the new blue band等新波段的优点
  • 是L8SR的一部分
  • 服务于Landsat8数据

-huang et al.(2010)

  • 基于DEM归一化的温度和预分类森林像素检测云
    detects clouds based on temperature that are normalized by DEM and pre-classified confident forest pixels
  • 基于太阳传感器几何特征检测云阴影
    the cloud shadows are detected based on the solar-sensor geometry.

-Oreopoulos et al. (2011)

  • 改进MODIS的云检测算法应用在Landsat数据上
  • 不使用thermal band,其效果却与AACA媲美

-Zhu,Woodcock (2012) Zhu et al. (2015)

  • Fmask (Function of mask)
  • 利用光谱和空间信息
  • 服务于Landsat4-8数据
  • 云的识别基于云概率层?和场景动态阈值
    clouds are identified based on a cloud probability layer and a scene-based dynamic threshold
  • 基于相似性和相应的太阳传感器几何形状,云阴影与云相匹配
    cloud shadows are matched with clouds based on similarity and the corresponding solar-sensor geometry

-Qiu et al. (2017)

  • 整合DEM和Fmask➡MFmask (Mountainous Fmask)
  • 在山区,检测云/云阴影效果更好

-USGS EROS Center(2013)

  • 使用C语言重新编码Fmask➡CFmask
  • 2016年后,CFmask用来为所有正式分层数据收集结构(the formal tiered data Collection structure) 的1级产品提供质量评估(QA)波段,即全球归档计划(LGAC)后的1级产品中的QA波段

Landsat MSS的云/云阴影的检测具有较大的挑战性,因为MSS没有热波段和短波近红外波段thermal and SWIR bands,这两个波段对云的检测都十分重要。

-Braaten et al. (2015)

  • rule-based approach,精度与Fmask相当

b.machine learning based
机器学习方法使用预先收集的训练数据来监督分类识别云和云阴影

-**Roy et al. (2010) Potapov et al. (2011) **

  • 决策树
  • 训练样本: 手动输入的云掩膜

Scaramuzza et al. (2012)

  • 两个不使用TIRS波段的针对Landsat8OLI的算法
  • 1.使用现成的机器学习2.使用神经网络对ACCA增强(AT-ACCA)

-Hughes and Hayes (2014)

  • 使用神经网络分类器和空间后处理识别云和云阴影
  • 与Fmask相比,这个方法在云阴影的检测上有更小的漏分误差(omission errors),在云的检测上有更大的漏分误差

局限性:虽然所有这些研究都指出了基于机器学习的云和云阴影检测算法的有效性,但这些算法需要对图像中的云、云阴影和地表条件有一定的知识(作为训练数据),并且这些算法很容易在特定的特定条件下无法检测到云和云阴影

未完2019.04.11

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值