1.MATLAB的基本知识
1-1、基本运算与函数
在MATLAB下进行基本数学运算,只需将运算式直接打入提示号(>>)之後,并按入Enter键即可。例如:
>>
(5*2+1.3-0.8)*10/25
ans =4.2000
MATLAB会将运算结果直接存入一变数ans,代表MATLAB运算後的答案(Answer)并显示其数值於萤幕上。
小提示:
">>"是MATLAB的提示符号(Prompt),但在PC中文视窗系统下,由於编码方式不同,此提示符号常会消失不见,但这并不会影响到MATLAB的运算结果。
我们也可将上述运算式的结果设定给另一个变数x:
x =
(5*2+1.3-0.8)*10^2/25
x = 42
此时MATLAB会直接显示x的值。由上例可知,MATLAB认识所有一般常用到的加(+)、减(-)、乘(*)、除(/)的数学运算符号,以及幂次运算(^)。
小提示:
MATLAB将所有变数均存成double的形式,所以不需经过变数宣告(Variabledeclaration)。MATLAB同时也会自动进行记忆体的使用和回收,而不必像C语言,必须由使用者一一指定.这些功能使的MATLAB易学易用,使用者可专心致力於撰写程式,而不必被软体枝节问题所干扰。
若不想让MATLAB每次都显示运算结果,只需在运算式最後加上分号(;)即可,如下例:
y =
sin(10)*exp(-0.3*4^2);
若要显示变数y的值,直接键入y即可:
>>y
y =-0.0045
在上例中,sin是正弦函数,exp是指数函数,这些都是MATLAB常用到的数学函数。
下表即为MATLAB常用的基本数学函数及三角函数:
小整理:MATLAB常用的基本数学函数
abs(x):纯量的绝对值或向量的长度
angle(z):复 数z的相角(Phase angle)
sqrt(x):开平方
real(z):复数z的实部
imag(z):复数z的虚 部
conj(z):复数z的共轭复数
round(x):四舍五入至最近整数
fix(x):无论正负,舍去小数至最近整数
floor(x):地板函数,即舍去正小数至最近整数
ceil(x):天花板函数,即加入正小数至最近整数
rat(x):将实数x化为分数表示
rats(x):将实数x化为多项分数展开
sign(x):符号函数 (Signum
function)。
当x<0时,sign(x)=-1;
当x=0时,sign(x)=0;
当x>0时,sign(x)=1。
> 小整理:MATLAB常用的三角函数
sin(x):正弦函数
cos(x):馀弦函数
tan(x):正切函数
asin(x):反正弦函数
acos(x):反馀弦函数
atan(x):反正切函数
atan2(x,y):四象限的反正切函数
sinh(x):超越正弦函数
cosh(x):超越馀弦函数
tanh(x):超越正切函数
asinh(x):反超越正弦函数
acosh(x):反超越馀弦函数
atanh(x):反超越正切函数
变数也可用来存放向量或矩阵,并进行各种运算,如下例的列向量(Row
vector)运算:
x = [1 3 5 2];
y = 2*x+1
结果:y = 3 7 11 5
小提示:变数命名的规则
1.第一个字母必须是英文字母 2.字母间不可留空格
3.最多只能有19个字母,MATLAB会忽略多馀字母
我们可以随意更改、增加或删除向量的元素:
y(3) = 2
%更改第三个元素
结果:y =3 7 2 5
y(6) = 10
% 加入第六个元素
结果:y = 3 7 2 5 0 10
y(4) = []
% 删除第四个元素,
结果:y = 3 7 2 0 10
在上例中,MATLAB会忽略所有在百分比符号(%)之後的文字,因此百分比之後的文字均可视为程式的注解(Comments)。MATLAB亦可取出向量的一个元素或一部份来做运算:
x(2)*3+y(4) %
取出x的第二个元素和y的第四个元素来做运算
ans = 9
y(2:4)-1 %
取出y的第二至第四个元素来做运算
ans = 6 1 -1
在上例中,2:4代表一个由2、3、4组成的向量
若对MATLAB函数用法有疑问,可随时使用help来寻求线上支援(on-line
help):helplinspace
小整理:MATLAB的查询命令
help:用来查询已知命令的用法。例如已知inv是用来计算反矩阵,键入help
inv即可得知有关inv命令的用法。(键入help help则显示help的用法,请试看看!)
lookfor:用来寻找未知的命令。例如要寻找计算反矩阵的命令,可键入
lookfor inverse,MATLAB即会列出所有和关键字inverse相关的指令。找到所需的命令後
,即可用help进一步找出其用法。(lookfor事实上是对所有在搜寻路径下的M档案进行关键字对第一注解行的比对,详见後叙。)
将行向量转置(Transpose)後,即可得到列向量(Column
vector):
z = x'
z = 4.0000
5.2000
6.4000
7.6000
8.8000
10.0000
不论是行向量或列向量,我们均可用相同的函数找出其元素个数、最大值、最小值等:
length(z) %
z的元素个数
ans = 6
max(z) %
z的最大值
ans = 10
min(z) %
z的最小值
ans =
4
小整理:适用於向量的常用函数有:
min(x): 向量x的元素的最小值
max(x): 向量x的元素的最大值
mean(x): 向量x的元素的平均值
median(x): 向量x的元素的中位数
std(x): 向量x的元素的标准差
diff(x): 向量x的相邻元素的差
sort(x): 对向量x的元素进行排序(Sorting)
length(x): 向量x的元素个数
norm(x): 向量x的欧氏(Euclidean)长度
sum(x): 向量x的元素总和
prod(x): 向量x的元素总乘积
cumsum(x): 向量x的累计元素总和
cumprod(x): 向量x的累计元素总乘积
dot(x, y): 向量x和y的内 积
cross(x, y): 向量x和y的外积
(大部份的向量函数也可适用於矩阵,详见下述。)
MATLAB用冒号创建一维数组
http://blog.csdn.net/ab1322583838/article/details/52789719
%用冒号创建一维数组clear all%清空MATLAB中的数据a=3:6 %a表示一个从3到6的数组b=2.2:2.5:6
%b表示初始值为2.2,每次增加2.5,直到6的数组c=3.2:-2.5:-6
%b表示初始值为3.2,每次增加-2.5,直到-6的数组
运行结果如下:
若要输入矩阵,则必须在每一列结尾加上分号(;),如下例:
A = [1 2 3 4; 5 6 7 8; 9 1011
12];
A =
1 2
3 4
5 6
7 8
9 10 11
12
同样地,我们可以对矩阵进行各种处理:
A(2,3) = 5 %
改变位於第二列,第三行的元素值
A =
1 2
3 4
5 6
5 8
9 10 11
12
B = A(2,1:3) %
取出部份矩阵B
B = 5 6 5
A = [A B'] %
将B转置後以列向量并入A
A =
1 2
3 4
5
5 6
5 8
6
9 10 11
12 5
A(:, 2) = [] %
删除第二行(:代表所有列)
A =
1 3
4 5
5 5
8 6
9 11 12 5
A = [A; 4 3 2 1]%
加入第四列
A =
1 3
4 5
5 5
8 6
9 11
12 5
4 3
2 1
A([1 4], :) = [] %
删除第一和第四列(:代表所有行)
A =
5 5
8 6
9 11
12 5
这几种矩阵处理的方式可以相互叠代运用,产生各种意想不到的效果,就看各位的巧思和创意。
小提示:在MATLAB的内部资料结构中,每一个矩阵都是一个以行为主(Column-oriented
)的阵列(Array)因此对於矩阵元素的存取,我们可用一维或二维的索引(Index)来定址。举例来说,在上述矩阵A中,位於第二列、第三行的元素可写为A(2,3)
(二维索引)或A(6)(一维索引,即将所有直行进行堆叠後的第六个元素)。
此外,若要重新安排矩阵的形状,可用reshape命令:
B = reshape(A, 4, 2) %
4是新矩阵的行数,2是新矩阵的列数
B =
5
8
9
12
5 6
11 5
小提示:
A(:)就是将矩阵A每一行堆叠起来,成为一个列向量,而这也是MATLAB变数的内部储存方式。以前例而言,reshape(A, 8,
1)和A(:)同样都会产生一个8x1的矩阵。
MATLAB可在同时执行数个命令,只要以逗号或分号将命令隔开:
x = sin(pi/3); y = x^2; z = y*10,
z =
7.5000
若一个数学运算是太长,可用三个句点将其延伸到下一行:
z = 10*sin(pi/3)* ...
sin(pi/3);
若要检视现存於工作空间(Workspace)的变数,可键入who:
who
Your variables are:
testfile x
这些是由使用者定义的变数。若要知道这些变数的详细资料,可键入:
whos
Name Size Bytes Class
A 2x4 64 double array
B 4x2 64 double array
ans 1x1 8 double array
x 1x1 8 double array
y 1x1 8 double array
z 1x1 8 double array
Grand total is 20 elements using 160
bytes
使用clear可以删除工作空间的变数:
clear A
A
??? Undefined function or variable
'A'.
另外MATLAB有些永久常数(Permanent constants),虽然在工作空间中看不
到,但使用者可直接取用,例如:
pi
ans = 3.1416
下表即为MATLAB常用到的永久常数。
小整理:MATLAB的永久常数 i或j:基本虚数单位
eps:系统的浮点(Floating-point)精确度
inf:无限大, 例如1/0 nan或NaN:非数值(Not a number) ,例如0/0
pi:圆周率 p(= 3.1415926...)
realmax:系统所能表示的最大数值
realmin:系统所能表示的最小数值
nargin: 函数的输入引数个数
nargin: 函数的输出引数个数
1-2、重复命令
最简单的重复命令是for圈(for-loop),其基本形式为:
for 变数 =
矩阵;
运算式;
end
其中变数的值会被依次设定为矩阵的每一行,来执行介於for和end之间的运算式。因此,若无意外情况,运算式执行的次数会等於矩阵的行数。
举例来说,下列命令会产生一个长度为6的调和数列(Harmonic
sequence):
x = zeros(1,6); %
x是一个16的零矩阵
for i = 1:6,
x(i) = 1/i;
end
结果: x = 1.0000 0.5000 0.3333 0.2500
0.2000 0.1667
在上例中,矩阵x最初是一个16的零矩阵,在for圈中,变数i的值依次是1到6,因此矩阵x的第i个元素的值依次被设为1/i。我们可用分数来显示此数列:
format rat %
使用分数来表示数值
disp(x)
1 1/2 1/3 1/4 1/5 1/6
for圈可以是多层的,下例产生一个16的Hilbert矩阵h,其中为於第i列、第j行的元素为
h =
zeros(6);
for i = 1:6,
for j = 1:6,
h(i,j) =
1/(i+j-1);
end
end
disp(h)
1 1/2 1/3 1/4 1/5 1/6
1/2 1/3 1/4 1/5 1/6 1/7
1/3 1/4 1/5 1/6 1/7 1/8
1/4 1/5 1/6 1/7 1/8
1/9
1/5 1/6 1/7 1/8 1/9
1/10
1/6 1/7 1/8 1/9 1/10
1/11
小提示:预先配置矩阵 在上面的例子,我们使用zeros来预先配置(Allocate)了一个适当大小的矩阵。
若不预先配置矩阵,程式仍可执行,但此时MATLAB需要动态地增加(或减小)矩阵的大小,因而降低程式的执行效率。
所以在使用一个矩阵时,若能在事前知道其大小,则最好先使用zeros或ones等命令来预先配置所需的记忆体(即矩阵)大小。
在下例中,for圈列出先前产生的Hilbert矩阵的每一行的平方和:
fori =
h,
disp(norm(i)^2); %
印出每一行的平方和
end
1299/871
282/551
650/2343
524/2933
559/4431
831/8801
在上例中,每一次i的值就是矩阵h的一行,所以写出来的命令特别简洁。
令一个常用到的重复命令是while圈,其基本形式为:
while
条件式;
运算式;
end
也就是说,只要条件示成立,运算式就会一再被执行。例如先前产生调和数列的例子,我们可用while圈改写如下:
x = zeros(1,6); %
x是一个16的零矩阵
i = 1;
while i <=
6,
x(i) =
1/i;
i =
i+1;
end
format short
1-3、逻辑命令
最简单的逻辑命令是if, ..., end,其基本形式为:
if
条件式;
运算式;
end
if rand(1,1) >
0.5,
disp('Given random number is greater than
0.5.');
end
Given random number is greater than 0.5.
1-4、集合多个命令於一个M档案
若要一次执行大量的MATLAB命令,可将这些命令存放於一个副档名为m的档案,并在
MATLAB提示号下键入此档案的主档名即可。此种包含MATLAB命令的档案都以m为副档名,因此通称M档案(M-files)。例如一个名为test.m的M档案,包含一连串的MATLAB命令,那麽只要直接键入test,即可执行其所包含的命令:
pwd %
显示现在的目录
ans =
D:\MATLAB5\bin
cd c:\data\mlbook %
进入test.m所在的目录
type test.m %
显示test.m的内容
% This is my first test
M-file.
% Roger Jang, March 3,
1997
fprintf('Start of
test.m!\n');
for i = 1:3,
fprintf('i = %d ---> i^3 = %d\n', i,
i^3);
end
fprintf('End of
test.m!\n');
test % 执行test.m
Start of test.m!
i = 1 ---> i^3 =
1
i = 2 ---> i^3 =
8
i = 3 ---> i^3 =
27
End of test.m!
小提示:第一注解行(H1 help line)
test.m的前两行是注解,可以使程式易於了解与管理。特别要说明的是,第一注解行通常用来简短说明此M档案的功能,以便lookfor能以关键字比对的方式来找出此M档案。举例来说,test.m的第一注解行包含test这个字,因此如果键入lookfor
test,MATLAB即可列出所有在第一注解行包含test的M档案,因而test.m也会被列名在内。
严格来说,M档案可再细分为命令集(Scripts)及函数(Functions)。
前述的test.m即为命令集,其效用和将命令逐一输入完全一样,因此若在命令集可以直接使用工作空间的变数,而且在命令集中设定的变数,也都在工作空间中看得到。
函数则需要用到输入引数(Input arguments)和输出引数(Output
arguments)来传递资讯,这就像是C语言的函数,或是FORTRAN语言的副程序(Subroutines)。
举例来说,若要计算一个正整数的阶乘
(Factorial),我们可以写一个如下的MATLAB函数并将之存档於fact.m:
function output =
fact(n)
% FACT Calculate factorial of a given positive
integer.
output =
1;
for i =
1:n,
output =
output*i;
end
其中fact是函数名,n是输入引数,output是输出引数,而i则是此函数用到的暂时变数。要使用此函数,直接键入函数名及适当输入引数值即可:
y = fact(5)
y = 120
(当然,在执行fact之前,你必须先进入fact.m所在的目录。)在执行fact(5)时,
MATLAB会跳入一个下层的暂时工作空间(Temperary
workspace),将变数n的值设定为5,然後进行各项函数的内部运算,所有内部运算所产生的变数(包含输入引数n、暂时变数i,以及输出引数output)都存在此暂时工作空间中。
运算完毕後,MATLAB会将最後输出引数output的值设定给上层的变数y,并将清除此暂时工作空间及其所含的所有变数。换句话说,在呼叫函数时,你只能经由输入引数来控制函数的输入,经由输出引数来得到函数的输出,但所有的暂
时变数都会随着函数的结束而消失,你并无法得到它们的值。
小提示:有关阶乘函数
前面(及後面)用到的阶乘函数只是纯粹用来说明MATLAB的函数观念。若实际要计算一个正整数n的阶乘(即n!)时,可直接写成prod(1:n),或是直接呼叫gamma函数:gamma(n-1)。
MATLAB的函数也可以是递归式的(Recursive),也就是说,一个函数可以呼叫它本身。
举例来说,n! =
n*(n-1)!,因此前面的阶乘函数可以改成递式的写法:
function output =
fact(n)
% FACT Calculate factorial of a given positive
integerrecursively.
if n == 1, % Terminating
condition
output = 1;
return;
end
output =
n*fact(n-1);
在写一个递函数时,一定要包含结束条件(Terminating
condition),否则此函数将会一再呼叫自己,永远不会停止,直到电脑的记忆体被耗尽为止。以上例而言,n==1即满足结束条件,此时我们直接将output设为1,而不再呼叫此函数本身。