西农matlab基础知识,MATLAB基础知识复习

1.MATLAB的基本知识

1-1、基本运算与函数

在MATLAB下进行基本数学运算,只需将运算式直接打入提示号(>>)之後,并按入Enter键即可。例如:

>>

(5*2+1.3-0.8)*10/25

ans =4.2000

MATLAB会将运算结果直接存入一变数ans,代表MATLAB运算後的答案(Answer)并显示其数值於萤幕上。

小提示:

">>"是MATLAB的提示符号(Prompt),但在PC中文视窗系统下,由於编码方式不同,此提示符号常会消失不见,但这并不会影响到MATLAB的运算结果。

我们也可将上述运算式的结果设定给另一个变数x:

x =

(5*2+1.3-0.8)*10^2/25

x = 42

此时MATLAB会直接显示x的值。由上例可知,MATLAB认识所有一般常用到的加(+)、减(-)、乘(*)、除(/)的数学运算符号,以及幂次运算(^)。

小提示:

MATLAB将所有变数均存成double的形式,所以不需经过变数宣告(Variabledeclaration)。MATLAB同时也会自动进行记忆体的使用和回收,而不必像C语言,必须由使用者一一指定.这些功能使的MATLAB易学易用,使用者可专心致力於撰写程式,而不必被软体枝节问题所干扰。

若不想让MATLAB每次都显示运算结果,只需在运算式最後加上分号(;)即可,如下例:

y =

sin(10)*exp(-0.3*4^2);

若要显示变数y的值,直接键入y即可:

>>y

y =-0.0045

在上例中,sin是正弦函数,exp是指数函数,这些都是MATLAB常用到的数学函数。

下表即为MATLAB常用的基本数学函数及三角函数:

小整理:MATLAB常用的基本数学函数

abs(x):纯量的绝对值或向量的长度

angle(z):复 数z的相角(Phase angle)

sqrt(x):开平方

real(z):复数z的实部

imag(z):复数z的虚 部

conj(z):复数z的共轭复数

round(x):四舍五入至最近整数

fix(x):无论正负,舍去小数至最近整数

floor(x):地板函数,即舍去正小数至最近整数

ceil(x):天花板函数,即加入正小数至最近整数

rat(x):将实数x化为分数表示

rats(x):将实数x化为多项分数展开

sign(x):符号函数 (Signum

function)。

当x<0时,sign(x)=-1;

当x=0时,sign(x)=0;

当x>0时,sign(x)=1。

> 小整理:MATLAB常用的三角函数

sin(x):正弦函数

cos(x):馀弦函数

tan(x):正切函数

asin(x):反正弦函数

acos(x):反馀弦函数

atan(x):反正切函数

atan2(x,y):四象限的反正切函数

sinh(x):超越正弦函数

cosh(x):超越馀弦函数

tanh(x):超越正切函数

asinh(x):反超越正弦函数

acosh(x):反超越馀弦函数

atanh(x):反超越正切函数

变数也可用来存放向量或矩阵,并进行各种运算,如下例的列向量(Row

vector)运算:

x = [1 3 5 2];

y = 2*x+1

结果:y = 3 7 11 5

小提示:变数命名的规则

1.第一个字母必须是英文字母 2.字母间不可留空格

3.最多只能有19个字母,MATLAB会忽略多馀字母

我们可以随意更改、增加或删除向量的元素:

y(3) = 2

%更改第三个元素

结果:y =3 7 2 5

y(6) = 10

% 加入第六个元素

结果:y = 3 7 2 5 0 10

y(4) = []

% 删除第四个元素,

结果:y = 3 7 2 0 10

在上例中,MATLAB会忽略所有在百分比符号(%)之後的文字,因此百分比之後的文字均可视为程式的注解(Comments)。MATLAB亦可取出向量的一个元素或一部份来做运算:

x(2)*3+y(4) %

取出x的第二个元素和y的第四个元素来做运算

ans = 9

y(2:4)-1 %

取出y的第二至第四个元素来做运算

ans = 6 1 -1

在上例中,2:4代表一个由2、3、4组成的向量

若对MATLAB函数用法有疑问,可随时使用help来寻求线上支援(on-line

help):helplinspace

小整理:MATLAB的查询命令

help:用来查询已知命令的用法。例如已知inv是用来计算反矩阵,键入help

inv即可得知有关inv命令的用法。(键入help help则显示help的用法,请试看看!)

lookfor:用来寻找未知的命令。例如要寻找计算反矩阵的命令,可键入

lookfor inverse,MATLAB即会列出所有和关键字inverse相关的指令。找到所需的命令後

,即可用help进一步找出其用法。(lookfor事实上是对所有在搜寻路径下的M档案进行关键字对第一注解行的比对,详见後叙。)

将行向量转置(Transpose)後,即可得到列向量(Column

vector):

z = x'

z = 4.0000

5.2000

6.4000

7.6000

8.8000

10.0000

不论是行向量或列向量,我们均可用相同的函数找出其元素个数、最大值、最小值等:

length(z) %

z的元素个数

ans = 6

max(z) %

z的最大值

ans = 10

min(z) %

z的最小值

ans =

4

小整理:适用於向量的常用函数有:

min(x): 向量x的元素的最小值

max(x): 向量x的元素的最大值

mean(x): 向量x的元素的平均值

median(x): 向量x的元素的中位数

std(x): 向量x的元素的标准差

diff(x): 向量x的相邻元素的差

sort(x): 对向量x的元素进行排序(Sorting)

length(x): 向量x的元素个数

norm(x): 向量x的欧氏(Euclidean)长度

sum(x): 向量x的元素总和

prod(x): 向量x的元素总乘积

cumsum(x): 向量x的累计元素总和

cumprod(x): 向量x的累计元素总乘积

dot(x, y): 向量x和y的内 积

cross(x, y): 向量x和y的外积

(大部份的向量函数也可适用於矩阵,详见下述。)

MATLAB用冒号创建一维数组

http://blog.csdn.net/ab1322583838/article/details/52789719

%用冒号创建一维数组clear all%清空MATLAB中的数据a=3:6 %a表示一个从3到6的数组b=2.2:2.5:6

%b表示初始值为2.2,每次增加2.5,直到6的数组c=3.2:-2.5:-6

%b表示初始值为3.2,每次增加-2.5,直到-6的数组

运行结果如下:

若要输入矩阵,则必须在每一列结尾加上分号(;),如下例:

A = [1 2 3 4; 5 6 7 8; 9 1011

12];

A =

1  2

3 4

5  6

7 8

9  10 11

12

同样地,我们可以对矩阵进行各种处理:

A(2,3) = 5 %

改变位於第二列,第三行的元素值

A =

1  2

3 4

5  6

5 8

9  10 11

12

B = A(2,1:3) %

取出部份矩阵B

B = 5 6 5

A = [A B'] %

将B转置後以列向量并入A

A =

1  2

3  4

5

5  6

5  8

6

9  10 11

12 5

A(:, 2) = [] %

删除第二行(:代表所有列)

A =

1  3

4 5

5  5

8 6

9  11 12  5

A = [A; 4 3 2 1]%

加入第四列

A =

1  3

4  5

5  5

8  6

9  11

12 5

4  3

2  1

A([1 4], :) = [] %

删除第一和第四列(:代表所有行)

A =

5  5

8  6

9  11

12 5

这几种矩阵处理的方式可以相互叠代运用,产生各种意想不到的效果,就看各位的巧思和创意。

小提示:在MATLAB的内部资料结构中,每一个矩阵都是一个以行为主(Column-oriented

)的阵列(Array)因此对於矩阵元素的存取,我们可用一维或二维的索引(Index)来定址。举例来说,在上述矩阵A中,位於第二列、第三行的元素可写为A(2,3)

(二维索引)或A(6)(一维索引,即将所有直行进行堆叠後的第六个元素)。

此外,若要重新安排矩阵的形状,可用reshape命令:

B = reshape(A, 4, 2) %

4是新矩阵的行数,2是新矩阵的列数

B =

5

8

9

12

5   6

11  5

小提示:

A(:)就是将矩阵A每一行堆叠起来,成为一个列向量,而这也是MATLAB变数的内部储存方式。以前例而言,reshape(A, 8,

1)和A(:)同样都会产生一个8x1的矩阵。

MATLAB可在同时执行数个命令,只要以逗号或分号将命令隔开:

x = sin(pi/3); y = x^2; z = y*10,

z =

7.5000

若一个数学运算是太长,可用三个句点将其延伸到下一行:

z = 10*sin(pi/3)* ...

sin(pi/3);

若要检视现存於工作空间(Workspace)的变数,可键入who:

who

Your variables are:

testfile x

这些是由使用者定义的变数。若要知道这些变数的详细资料,可键入:

whos

Name Size Bytes Class

A 2x4 64 double array

B 4x2 64 double array

ans 1x1 8 double array

x 1x1 8 double array

y 1x1 8 double array

z 1x1 8 double array

Grand total is 20 elements using 160

bytes

使用clear可以删除工作空间的变数:

clear A

A

??? Undefined function or variable

'A'.

另外MATLAB有些永久常数(Permanent constants),虽然在工作空间中看不

到,但使用者可直接取用,例如:

pi

ans = 3.1416

下表即为MATLAB常用到的永久常数。

小整理:MATLAB的永久常数 i或j:基本虚数单位

eps:系统的浮点(Floating-point)精确度

inf:无限大, 例如1/0 nan或NaN:非数值(Not a number) ,例如0/0

pi:圆周率 p(= 3.1415926...)

realmax:系统所能表示的最大数值

realmin:系统所能表示的最小数值

nargin: 函数的输入引数个数

nargin: 函数的输出引数个数

1-2、重复命令

最简单的重复命令是for圈(for-loop),其基本形式为:

for 变数 =

矩阵;

运算式;

end

其中变数的值会被依次设定为矩阵的每一行,来执行介於for和end之间的运算式。因此,若无意外情况,运算式执行的次数会等於矩阵的行数。

举例来说,下列命令会产生一个长度为6的调和数列(Harmonic

sequence):

x = zeros(1,6); %

x是一个16的零矩阵

for i = 1:6,

x(i) = 1/i;

end

结果: x = 1.0000 0.5000 0.3333 0.2500

0.2000 0.1667

在上例中,矩阵x最初是一个16的零矩阵,在for圈中,变数i的值依次是1到6,因此矩阵x的第i个元素的值依次被设为1/i。我们可用分数来显示此数列:

format rat %

使用分数来表示数值

disp(x)

1 1/2 1/3 1/4 1/5 1/6

for圈可以是多层的,下例产生一个16的Hilbert矩阵h,其中为於第i列、第j行的元素为

h =

zeros(6);

for i = 1:6,

for j = 1:6,

h(i,j) =

1/(i+j-1);

end

end

disp(h)

1 1/2 1/3 1/4 1/5 1/6

1/2 1/3 1/4 1/5 1/6 1/7

1/3 1/4 1/5 1/6 1/7 1/8

1/4 1/5 1/6 1/7 1/8

1/9

1/5 1/6 1/7 1/8 1/9

1/10

1/6 1/7 1/8 1/9 1/10

1/11

小提示:预先配置矩阵 在上面的例子,我们使用zeros来预先配置(Allocate)了一个适当大小的矩阵。

若不预先配置矩阵,程式仍可执行,但此时MATLAB需要动态地增加(或减小)矩阵的大小,因而降低程式的执行效率。

所以在使用一个矩阵时,若能在事前知道其大小,则最好先使用zeros或ones等命令来预先配置所需的记忆体(即矩阵)大小。

在下例中,for圈列出先前产生的Hilbert矩阵的每一行的平方和:

fori =

h,

disp(norm(i)^2); %

印出每一行的平方和

end

1299/871

282/551

650/2343

524/2933

559/4431

831/8801

在上例中,每一次i的值就是矩阵h的一行,所以写出来的命令特别简洁。

令一个常用到的重复命令是while圈,其基本形式为:

while

条件式;

运算式;

end

也就是说,只要条件示成立,运算式就会一再被执行。例如先前产生调和数列的例子,我们可用while圈改写如下:

x = zeros(1,6); %

x是一个16的零矩阵

i = 1;

while i <=

6,

x(i) =

1/i;

i =

i+1;

end

format short

1-3、逻辑命令

最简单的逻辑命令是if, ..., end,其基本形式为:

if

条件式;

运算式;

end

if rand(1,1) >

0.5,

disp('Given random number is greater than

0.5.');

end

Given random number is greater than 0.5.

1-4、集合多个命令於一个M档案

若要一次执行大量的MATLAB命令,可将这些命令存放於一个副档名为m的档案,并在

MATLAB提示号下键入此档案的主档名即可。此种包含MATLAB命令的档案都以m为副档名,因此通称M档案(M-files)。例如一个名为test.m的M档案,包含一连串的MATLAB命令,那麽只要直接键入test,即可执行其所包含的命令:

pwd %

显示现在的目录

ans =

D:\MATLAB5\bin

cd c:\data\mlbook %

进入test.m所在的目录

type test.m %

显示test.m的内容

% This is my first test

M-file.

% Roger Jang, March 3,

1997

fprintf('Start of

test.m!\n');

for i = 1:3,

fprintf('i = %d ---> i^3 = %d\n', i,

i^3);

end

fprintf('End of

test.m!\n');

test % 执行test.m

Start of test.m!

i = 1 ---> i^3 =

1

i = 2 ---> i^3 =

8

i = 3 ---> i^3 =

27

End of test.m!

小提示:第一注解行(H1 help line)

test.m的前两行是注解,可以使程式易於了解与管理。特别要说明的是,第一注解行通常用来简短说明此M档案的功能,以便lookfor能以关键字比对的方式来找出此M档案。举例来说,test.m的第一注解行包含test这个字,因此如果键入lookfor

test,MATLAB即可列出所有在第一注解行包含test的M档案,因而test.m也会被列名在内。

严格来说,M档案可再细分为命令集(Scripts)及函数(Functions)。

前述的test.m即为命令集,其效用和将命令逐一输入完全一样,因此若在命令集可以直接使用工作空间的变数,而且在命令集中设定的变数,也都在工作空间中看得到。

函数则需要用到输入引数(Input arguments)和输出引数(Output

arguments)来传递资讯,这就像是C语言的函数,或是FORTRAN语言的副程序(Subroutines)。

举例来说,若要计算一个正整数的阶乘

(Factorial),我们可以写一个如下的MATLAB函数并将之存档於fact.m:

function output =

fact(n)

% FACT Calculate factorial of a given positive

integer.

output =

1;

for i =

1:n,

output =

output*i;

end

其中fact是函数名,n是输入引数,output是输出引数,而i则是此函数用到的暂时变数。要使用此函数,直接键入函数名及适当输入引数值即可:

y = fact(5)

y = 120

(当然,在执行fact之前,你必须先进入fact.m所在的目录。)在执行fact(5)时,

MATLAB会跳入一个下层的暂时工作空间(Temperary

workspace),将变数n的值设定为5,然後进行各项函数的内部运算,所有内部运算所产生的变数(包含输入引数n、暂时变数i,以及输出引数output)都存在此暂时工作空间中。

运算完毕後,MATLAB会将最後输出引数output的值设定给上层的变数y,并将清除此暂时工作空间及其所含的所有变数。换句话说,在呼叫函数时,你只能经由输入引数来控制函数的输入,经由输出引数来得到函数的输出,但所有的暂

时变数都会随着函数的结束而消失,你并无法得到它们的值。

小提示:有关阶乘函数

前面(及後面)用到的阶乘函数只是纯粹用来说明MATLAB的函数观念。若实际要计算一个正整数n的阶乘(即n!)时,可直接写成prod(1:n),或是直接呼叫gamma函数:gamma(n-1)。

MATLAB的函数也可以是递归式的(Recursive),也就是说,一个函数可以呼叫它本身。

举例来说,n! =

n*(n-1)!,因此前面的阶乘函数可以改成递式的写法:

function output =

fact(n)

% FACT Calculate factorial of a given positive

integerrecursively.

if n == 1, % Terminating

condition

output = 1;

return;

end

output =

n*fact(n-1);

在写一个递函数时,一定要包含结束条件(Terminating

condition),否则此函数将会一再呼叫自己,永远不会停止,直到电脑的记忆体被耗尽为止。以上例而言,n==1即满足结束条件,此时我们直接将output设为1,而不再呼叫此函数本身。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值