最小生成树之Prime算法

Prime算法是构建最小生成树的有效方法,基于切分定理,通过不断选择横切边中权值最小的边,逐步构建最小生成树。初始选择一个顶点作为切分起点,将该顶点视为已选集合,其余顶点为未选集合。算法迭代过程涉及选择最小横切边,将其加入最小生成树并更新切分状态,直至所有顶点被包含。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Prime算法是解决最小生成树的一个算法。
不管是Kruskal算法还是Prime算法去,其核心都是切分定理。
切分定理:
切分
把图中的节点分为两部分,称为一个切分(Cut);
横切边
如果一个边的两个端点,属于切分(Cut)不同的两边,这个边称为横切边(Crossing Edge);
切分定理
给定任意切分,横切边中权值最小的边必然属于最小生成树;

切分定理的证明可使用反正法,这里不给出证明,证明不了只需要知道切分定理的正确性就能推出Prime算法的正确性。

Prime算法:
Prime算法是切分定理的正向应用。首先选定一个顶点0,当选择一个顶点后就把它看成一个切分,一部分为已选顶点集合{0},另一部分为未选顶点集合{1,2,3,4,5}。那么此时会出现横切边{{0,1},{0,2},{0,3}}。

在这里插入图片描述

按照切分定理选择最小的边,{0,3}则为最小生成树的一条边。此时将{0,3}这条边加入到存储最小生成树的数据结构中,将顶点3加入到已选集合中{0,3},未选集合为{2,4,5},这时横向边集合也发生了改变{{0,2},{0,1},{0,3},{3,7},{3,5},{3,4}}。
在这里插入图片描述

可以观察到{0,3}这条边刚刚已经加入到最小生成树中了,已经不再是横向边了。
此时可按照切分定理,选择最小的横向边,将边的另一点加入到已选集合中。
按照这个算法继续往下执行到如图所示:
在这里插入图片描述

可发现横向边从{0,2}从橙色变成了绿色。其实很好理解,已选集合{0,2,3,4}中的{0,2}那条边已经没有机会再被选择了,他们内部已经构成了局部最小生成树了。
按照这个算法,直到所有顶点都在已选集合中,算法就计算结束了。
下面代码使用最小堆来实现Prime算法。
Prime代码

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值