算法分析与设计——分治法最近点对

分治法求解最近点对:算法详解与实现
本文详细介绍了如何使用分治法解决最近点对问题,通过划分、递归求解子问题和合并结果,优化算法至O(nlogn)复杂度。关键步骤包括根据中位数分割点集、处理边界情况及在带状区域搜索最短距离。

分治法最近点对

分治法

分治法将一个难以直接解决的大问题划分成一些规模较小的子问题,分别求解各个子问题,再合并子问题的解得到原问题的解。

一般来说,分治法的求解过程由以下三个阶段组成:

  1. 划分:把规模为n的原问题划分为k个规模较小的子问题。
  2. 求解子问题:各个子问题的解法与原问题的解法通常是相同的,可以用递归的方法求解各个子问题,有时递归也可以用循环来实现。
  3. 合并:把各个子问题的解合并起来,合并的代价因情况不同有很大的差异,分治算法的效率很大程度上依赖于合并的实现。

最近点对问题

问题描述

设p1=(x1,y1),p2=(x2,y2),···,pn=(xn,yn)是平面上n个点构成的集合S,最近点对问题就是找出集合S中距离最近的点对。严格地说,最接近的点对可能多于一个,简单起见,找出一个即可。

应用实例

假设在一个金属片上钻n个大小一样的洞,如果洞的距离太近,金属就可能会断裂。可以通过任意两个洞的最小距离来估算金属断裂的概率。这种最小距离问题实际上也就是最近点对问题。

想法

最近点对的分治策略如下:

(1)划分:将集合S分成两个子集S1和S2根据平衡子问题原则,每个子集中大约有n/2个点,设集合S的最近对是pi和pj,则会出现以下三种情况:

  1. pi∈S1,pj∈S1,即最近对均在集合S1中;
  2. pi∈S2,pj∈S2,即最近对均在集合S2中;
  3. pi∈S1,pj∈S2,即最近对分别在集合S1和S2中。

(2)求解子问题:对于划分阶段的情况1和情况2可递归求解,如果最近对分别在两个子集中,在后边做讨论。

(3)合并:比较在划分阶段三种情况下的最近点对,取三者之中距离较小者为原问题的解。

下面讨论划分阶段的情况3:

为了将平面上的点集S分割为点的个数大致相同的两个集合,选取垂直线x=m来作分割线,其中m为S中各点x坐标的中位数。由此将S分割为S1和S2。递归地在S1和S2中求解最近对问题,分别得到S1中的最近距离d1和S2中的最近距离d2,令d=min(d1,d2。若S的最近对(p,q)之间的距离小于d,则p和q必定分属于集合S1和S2。那么,不妨设p∈S1,q∈S2,则p和q距离直线x=m的距离均小于d,所以,可以将求解限制在以x=m为中心,宽为2d的垂直带P1和P2中,垂直带之外的任何点对之间的距离都一定大于d。

在这里插入图片描述
假设点p(x,y)是集合P1和P2中y坐标最小的点,则点p可能在P1中也可能在P2中,现在需要找出来和点p之间小于d的点,显然这样的点的y坐标一定位于区间[y,y+d]之间,而且这样的点不会超过8个,因为P1和P2中点的相互之间的距离至少为d,如下图所示。

在这里插入图片描述
所以,可以将P1和P2中的点按照y坐标升序排列,顺序地处理P1和P2中的点p(x,y),在y坐标区间[y,y+d]内最多取出8个候选点,计算它们和点p之间的距离。

算法

简单起见,假设点集S已按照x坐标升序排列,伪代码描述如下:

输入:按x坐标升序排列的n个点的集合S
输出:最近点对的距离

  1. 如果n等于2,则返回(x1,y1)和(x2,y2)之间的距离,算法结束;
  2. 划分:m=S中各点x坐标的中位数;
  3. d1=计算{(x1,y1),···,(xm,ym)}的最近对距离;
  4. d2=计算{(xm,ym),···,(xn,yn)}的最近对距离;
  5. d=min{d1,d2};
  6. 依次考察集合S中的点p(x,y),如果x<=xm并且x>=xm-d,则将点p放入集合P1中;如果x>xm并且x<=xm+d,则将点p放入集合P2中;
  7. 将集合P1和P2按y坐标升序排列;
  8. 对集合P1和P2中的每个点p(x,y),在y坐标区间[y,y+d]内最多取出8个候选点,计算与点p的最近距离d3
  9. 返回min{d,d3};

源代码

#include<iostream>
#include<math.h>
#include<stdlib.h>

using namespace std;

int M[2], N[2], P[2], Q[2];

typedef struct point
{
   
   
    double x,y;
}point;

void Qsortx(point *A, int low, int high)
  {
   
   
    double tempx, tempy;
    int i = low, j = high;
    if(low < high)
      {
   
   
        tempx = A[i].x;
        tempy = A[i].y;
        while(i != j)
         {
   
   
            while(j > i && A[j].x > tempx)
               j--;
            if(i < j)
              {
   
   
                A[i].x = A[j].x;
                A[i].y = A[j].y;
                i++;
              }
            while(i < j && A[i].x < tempx)
              i++;
            if(i<j)
              {
   
   
                A[j].x = A[i].x;
                A[j].y = A[i].y;
                j--;
              }
            A[i].x = tempx;
            A[i].y = tempy
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值