海蓝时见鲸_
码龄7年
求更新 关注
提问 私信
  • 博客:13,170
    13,170
    总访问量
  • 1
    原创
  • 4
    粉丝
  • 14
    关注
IP属地以运营商信息为准,境内显示到省(区、市),境外显示到国家(地区)
IP 属地:北京市
加入CSDN时间: 2018-05-21
博客简介:

海蓝时见鲸

博客描述:
==个人备忘录==
查看详细资料
个人成就
  • 获得18次点赞
  • 内容获得0次评论
  • 获得90次收藏
  • 代码片获得464次分享
  • 博客总排名1,847,573名
创作历程
  • 1篇
    2020年
成就勋章

TA关注的专栏 1

TA关注的收藏夹 0

TA关注的社区 1

TA参与的活动 0

兴趣领域 设置
  • 人工智能
    机器学习自然语言处理pytorchnlp数据分析
创作活动更多

『技术文档』写作方法征文挑战赛

在技术的浩瀚海洋中,一份优秀的技术文档宛如精准的航海图。它是知识传承的载体,是团队协作的桥梁,更是产品成功的幕后英雄。然而,打造这样一份出色的技术文档并非易事。你是否在为如何清晰阐释复杂技术而苦恼?是否纠结于文档结构与内容的完美融合?无论你是技术大神还是初涉此领域的新手,都欢迎分享你的宝贵经验、独到见解与创新方法,为技术传播之路点亮明灯!

50人参与 去参加
  • 最近
  • 文章
  • 专栏
  • 代码仓
  • 资源
  • 收藏
  • 关注/订阅/互动
更多
  • 最近

  • 文章

  • 专栏

  • 代码仓

  • 资源

  • 收藏

  • 关注/订阅/互动

  • 社区

  • 帖子

  • 问答

  • 课程

  • 视频

搜索 取消

使用pytorch获取bert词向量

首先安装pytorch-pretrained-bert包:pip install pytorch-pretrained-bert然后加载预训练模型from pytorch_pretrained_bert import BertTokenizer, BertModel, BertForMaskedLM# Load pretrained model/tokenizertokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
原创
发布博客 2020.07.19 ·
13169 阅读 ·
18 点赞 ·
7 评论 ·
88 收藏