常用linux命令

1. 创建文件夹 mkdir xxx(文件夹名字) 2. 删除文件夹 rm -rf xxx(文件夹名字) 3. ls : 列出当前文件夹下文件 cd xxx :进入某文件 cd .. : 退出进去上一级路径 4. 下载GitHub代码 git clone xxxx.git(复制...

2019-05-16 16:50:21

阅读数 5

评论数 0

多人使用服务器,如何开个人账户?以及 个人账户如何操作服务器?

多人使用服务器时,由于实验环境不一样,为了避免冲突,所以使用个人账户 个人账户彼此不会影响,互相独立。需要在个人账户下重新配置所有环境(anaconda, pytorch,...) 1.多人使用服务器,如何开个人账户? 服务器 linux 版本最好是16.04.1 装CUDA比较稳定 ...

2019-04-09 09:51:42

阅读数 96

评论数 1

Pycharm远程连接服务器(windows下远程修改服务器代码)

永久激活 参考:https://www.jianshu.com/p/7e31bf8dbdb4 Pycharm连接远程服务器 1、写在前面 远程连接pycharm,直接在windows下pycharm里修改再保存就可以实现同步更新到服务器里的代码里了。 2、content 打开pych...

2019-03-12 20:41:41

阅读数 48

评论数 0

管理anaconda虚拟环境

管理anaconda虚拟环境 转:http://blog.csdn.net/lyy14011305/article/details/59500819 1、首先在所在系统中安装Anaconda。可以打开命令行输入conda -V检验是否安装以及当前conda的版本。 2、conda常用的命令...

2019-03-11 21:04:12

阅读数 24

评论数 0

12.SSD 论文总结

SSD : YOLO 的改进,性能基本和 Faster RCNN 持平 主要思路就是Faster R-CNN + YOLO,利用YOLO的思路 和 Faster R-CNN的anchor box的思想。 关键:use of multi-scale convolutional bounding ...

2019-02-27 22:08:52

阅读数 14

评论数 0

11.YOLO 论文总结

YOLO 物体检测  ( learns general representations of objects ) 是 RCNN 路线之外的另一种方向。速度更快但准确性略低。 功能 :直接从image pixels 到 边界框坐标 和 类概率 。you only look once (YOL...

2019-02-25 17:03:16

阅读数 32

评论数 0

10.Faster R-CNN

Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks 在 Fast RCNN 基础上进一步优化。 region-based detectors(Fast R-CNN) 使用的卷积特征图,...

2019-01-29 19:20:12

阅读数 30

评论数 0

9.Fast R-CNN

检测的主要问题:处理候选框的定位问题;候选框提供的位置需要进一步精确。 提出:单阶段训练算法联合训练 classify object proposals 和 refine their spatial locations. 解决了之前 RCNN 和 SPP-Net 的 multi-stage p...

2019-01-22 09:28:33

阅读数 33

评论数 0

8.SPP-net 论文总结

** Spatial Pyramid Pooling in Deep Convolutional Networks for Visual Recognition ** 1.SPP-net 是在 Rcnn 上的改进,速度大幅度提升。 在目标检测中,Rcnn 用 region propos...

2019-01-18 11:42:51

阅读数 31

评论数 0

7.Rcnn 论文总结

神经网络的研究分为两种: 1.研究修改网络结构(层的数量,层与层之间的关系等)。最终目标:准确率高,结构稀疏 (Alexnet , vggnet , goolenet , resnet …) 2.研究网络的应用:分类、检测、分割 分类:结果是或不是 检测:框出物体 分割:分出物体准确轮...

2019-01-05 21:10:27

阅读数 52

评论数 0

6.deep compression 论文总结

1.背景: 问题:深度网络 计算和内存密集(大存储开销,能量消耗),很难部署到硬件资源有限的嵌入式系统/移动系统 解决方案:通过 pruning, trained quantization and Huffman coding 压缩模型,不影响正确率 2.介绍 pruning:学习...

2018-12-15 11:14:23

阅读数 27

评论数 0

5.ResNet 论文总结

1.背景 网络的 depth 很重要

2018-12-13 16:34:37

阅读数 68

评论数 0

4.GoogLeNet 论文总结

1. inception 为了找到最优的稀疏结构单元,提出 inception 结构: inception:将不同的卷积层并联到一起,提取多尺度信息,多分辨率融合 不同大小卷积核学习,相当于融合不同分辨率 (大小目标 大小卷积核)/ (远近目标 大小卷积核 ) 改进了网络内部计算资...

2018-12-10 21:48:31

阅读数 56

评论数 0

Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks 总结

1.Abstract Image-to-image translation training set of aligned image pairs However ,paired training data will not be available Our goal:G : X --...

2018-12-07 19:35:58

阅读数 41

评论数 0

Image-to-Image Translation with Conditional Adversarial Networks 总结

cGAN: Conditional GAN — 在生成模型G和判别模型D中都加入条件信息来引导模型的训练 a general-purpose solution to image-to-image translation problems learn the mapping from...

2018-12-03 21:44:46

阅读数 54

评论数 0

3.VGG 论文总结

1. VGG:AlexNet的加强版(depth on its accuracy) 结构对比(卷积层 --> 卷积群) 2.实验中VGG卷积层深度设置 如上图所示: 红色箭头 表示 : 每个网络的结构设计(11层 -> ...

2018-11-27 20:29:41

阅读数 84

评论数 0

2.Network in Networks 论文总结

目的: 改进CNN,可以学习到更加抽象和有效的非线性特征 常规卷积层: conv→relu conv: conv_out=∑(x·w) relu: y=max(0, conv_out) maxout: several conv(full)→max maxout:一种激活...

2018-11-23 20:25:03

阅读数 81

评论数 0

1. AlexNet 论文总结

1.网络结构: imput Conv - RNL - Maxpooling - ReLU Conv - RNL - Maxpooling - ReLU Conv - ReLU Conv - ReLU Conv - Maxpooling - ReLU fullyConnected -...

2018-11-21 22:22:28

阅读数 113

评论数 0

Linux + pytorch 安装环境

更新pip : python -m pip install --upgrade pip -i https://pypi.tuna.tsinghua.edu.cn/simple mkdir ~/.pip vim ~/.pip/pip.conf [global] ind...

2018-11-02 19:57:37

阅读数 570

评论数 1

cs231n assignment7 CNN

2018-10-26 20:18:16

阅读数 33

评论数 0

提示
确定要删除当前文章?
取消 删除
关闭
关闭