Covid19:基于网络的传染病模型Virus spread on network


github地址

Disease Spreading on Network

We consider the number of connection in a network and build up a model to describe the epidemic disease spreading on network. First, we could consider a network with n nodes and random edges and k be the degree of a node which means the number of connections each person has with others. The distribution of the network could be described a degree distribution p k p_k pk, and G 0 ( t ) G_0(t) G0(t) is the moment generating function of k.

According to the definition of MGF, G 0 ( t ) = E ( e t k ) = ∑ k = 0 ∞ p k e t k = ∑ k = 0 ∞ p k x k ( ∵ x = e t ) G_0(t)=E(e^{tk})=\sum_{k=0}^\infty p_k e^{tk}=\sum_{k=0}^\infty p_kx^k(\because x=e^t) G0(t)=E(etk)=k=0pketk=k=0pkxk(x=et)

According to the normalization property, G ( 1 ) = ∑ k = 0 ∞ p k = 1 G(1)=\sum_{k=0}^\infty p_k=1 G(1)=k=0pk=1

We could find p k p_k pk by getting the function of G 0 ( t ) G_0(t) G0(t), since p k = d k d X k G 0 ( x ) k ! ∣ x = 0 p_k=\frac{d^k}{dX_k}\frac{G_0(x)}{k!}|_{x=0} pk=dXkdkk!G0(x)x=0

We could the r-th moments of p k p_k pk by z r = E [ k r ] = ∑ k = 0 ∞ k r p k = [ ( x d d x ) r G 0 ( x ) ] ∣ x = 1 z_r=E[k^r]=\sum_{k=0}^\infty k^r p_k=[(x\frac{d}{dx})^rG_0(x)]|_{x=1} zr=E[kr]=k=0krpk=[(xdxd)rG0(x)]x=1, for example, the first moment z = G 0 ′ ( 1 ) z=G_0'(1) z=G0(1).

For Y = ∑ i = 1 m k i ,     k i ∼ p − k Y=\sum_{i=1}^mk_i, ~~~k_i\sim p-k Y=i=1mki,   kipk, the MGF of sum of degree of m independent nodes is G Y ( x ) = [ G 0 ( x ) ] m G_Y(x)=[G_0(x)]^m GY(x)=[G0(x)]m

If node c has k c k_c kc edges, it is k c k_c kc times as likely connect to A as B is, thus p k ′ ∝ k p k p_k' \propto k p_k pkkpk, ∑ p k ′ = c ∑ k p k = 1 \sum p_k'=c\sum kp_k=1 pk=ckpk=1, so p k ′ = k p k ∑ j p j = k p k z p_k'=\frac{kp_k}{\sum_{j}p_j}=\frac{kp_k}{z} pk=jpjkpk=zkpk. The MGF of the original and first neighbors is G 1 ′ ( x ) = ∑ p k ′ x k = ∑ k p k ∑ j p j x k = x G 0 ′ ( x ) G 0 ′ ( 1 ) G_1'(x)=\sum p_k'x^k=\sum \frac{kp_k}{\sum_{j}p_j}x^k=x\frac{G_0'(x)}{G_0'(1)} G1(x)=pkxk=jpjkpkxk=xG0(1)G0(x).
F o r   e x c e s s   d e g r e e , q k = ( k + 1 ) p k + 1 ∑ j p j = ( k + 1 ) p k + 1 z G 1 ( x ) = ∑ k = 0 ∞ q k x k = ∑ k = 0 ∞ ( k + 1 ) p k + 1 x k z = ∑ k ′ = 0 ∞ k ′ p k ′ x k − 1 z = G 0 ′ ( x ) G 0 ′ ( 1 ) For ~excess~ degree, q_k=\frac{(k+1)p_{k+1}}{\sum _j p_j}\\ =\frac{(k+1)p_{k+1}}{z}\\ G_1(x)=\sum_{k=0}^\infty q_kx^k=\sum_{k=0}^\infty\frac{(k+1)p_{k+1}x^k}{z}\\ =\sum_{k'=0}^\infty\frac{k'p_{k'}x^{k-1}}{z}\\ =\frac{G_0'(x)}{G_0'(1)}\\ For excess degree,qk=jpj(k+1)pk+1=z(k+1)pk+1G1(x)=k=0qkxk=k=0z(k+1)pk+1xk=k=0zkpkxk1=G0(1)G0(x)
The MGF for the second neighbor is G ( 2 ) = ∑ p k G ( 2 ) ( x ∣ k ) = ∑ p k [ G 1 ( x ) ] k = G 0 ( G 1 ( x ) ) G^{(2)}=\sum p_kG^{(2)}(x|k)=\sum p_k [G_1(x)]^k=G_0(G_1(x)) G(2)=pkG(2)(xk)=pk[G1(x)]k=G0(G1(x)). Similarly, the number of m-th nearest neighbor is G ( m ) ( x ) = G ( m − 1 ) ( G 1 ( x ) )   f o r   m > 2 G^{(m)}(x)=G^{(m-1)}(G_1(x))~for~ m>2 G(m)(x)=G(m1)(G1(x)) for m>2. Thus, the average number of n-th neighbor is z n = G ( m ) ′ ( x ) ∣ x = 1 = G 0 ′ ( 1 ) ∗ ( G 1 ′ ( 1 ) ) ( m − 1 ) z_n=G^{(m)'}(x)|_{x=1}=G_0'(1)*(G_1^{'}(1))^{(m-1)} zn=G(m)(x)x=1=G0(1)(G1(1))(m1).

Considering Transmissibility for Outbreak Analysis

Let r i j r_{ij} rij be the rate of disease-causing contacts between i and j. τ i \tau_i τi be the time duration that i remains infective. T i j T_{ij} Tij be the probability of transmission which is unknown but should be a function of r i j r_{ij} rij and τ i \tau_i τi.

Assume r i j ∼ P r ( r ) , τ i ∼ P τ ( τ ) r_{ij} \sim P_r(r),\tau_i\sim P_{\tau}(\tau) rijPr(r),τiPτ(τ) and they are independent from each other. Within ξ t \xi_t ξt time interval, i does not inject j with probability 1 − r i j ξ t 1-r_{ij}\xi_t 1rijξt . so in all T i ξ t \frac{T_i}{\xi_t} ξtTi time interval, the probability of Not getting the disease is ( 1 − r i j ξ t ) T i ξ t (1-r_{ij}\xi_t)\frac{T_i}{\xi_t} (1rijξt)ξtTi.
P [ i   d o e s   n o t   i n f e c t   j ] = 1 − T i j = l i m ξ t → o ( 1 − r i j ξ t ) T i ξ t = e − r i j τ i ∴ T i j = 1 − e − r i j τ i T h e   a v e r a g e   t r a n s i m i s s i b i l i t y   i s T = E [ T i j ] = 1 − E [ e − r i j τ i ] = 1 − ∫ 0 ∞ ∫ 0 ∞ e − r t P r ( r ) P τ ( τ ) d r d τ P[i~does~not~infect ~j]=1-T_{ij}\\ =lim_{\xi_t\rightarrow o}(1-r_{ij}\xi_t)\frac{T_i}{\xi_t}\\ =e^{-r_{ij}\tau_i}\\ \therefore T_{ij}=1-e^{-r_{ij}\tau_i}\\ The~average~transimissibility~is T=E[T_{ij}]\\ =1-E[e^{-r_{ij}\tau_i}]\\ =1-\int_0^\infty \int_0^\infty e^{-rt}P_r(r)P_{\tau}(\tau)drd\tau\\ P[i does not infect j]=1Tij=limξto(1rijξt)ξtTi=erijτiTij=1erijτiThe average transimissibility isT=E[Tij]=1E[erijτi]=100ertPr(r)Pτ(τ)drdτ
Then we consider the MGF as a function of transmissibility in which a node with k links, each is accessibly transmitted(occupied) with probability T T T.
P m 0 = P [ m   o f   k   l i n k s   o c c u p i e d ] = C m k T m ( 1 − T ) k − m G 0 ( x ; T ) = E [ x m ] = E [ E [ x m ∣ k ] ] = ∑ k = 0 ∞ E [ x m ∣ k ] p k = ∑ k = 0 ∞ ∑ m = 0 k x m P m k P k = ∑ k = 0 ∞ ∑ m = 0 k C m k T m ( 1 − T ) k − m x m P k = ∑ k = 0 ∞ ∑ m = 0 k C m k ( x T ) m ( 1 − T ) k − m P k = ∑ k = 0 ∞ ( x T + 1 − T ) k P k = G 0 ( 1 + ( x − 1 ) T ) A n d   G 0 ( x ; 1 ) = G 0 ( x )   G 0 ( 1 ; T ) = G 0 ( 1 )   G 0 ′ ( 1 ; T ) = T G 0 ′ ( 1 ) S i m i l a r l y , G 1 ( x ; T ) = G 1 ( 1 + ( x − 1 ) T )   G 1 ( x ; 1 ) = G 1 ( x )   G 1 ( 1 ; T ) = G 1 ( 1 )   G 1 ′ ( 1 ; T ) = T G 1 ′ ( 1 ) P_m^0=P[m~of~k~links~occupied]=C^k_mT^m(1-T)^{k-m}\\ G_0(x;T)=E[x^m]=E[E[x^m|k]]=\sum_{k=0}^\infty E[x^m|k]p_k\\ =\sum_{k=0}^\infty\sum_{m=0}^k x^m P_m^kP_k\\ =\sum_{k=0}^\infty\sum_{m=0}^kC^k_mT^m(1-T)^{k-m}x^mP_k\\ =\sum_{k=0}^\infty\sum_{m=0}^kC^k_m(xT)^m(1-T)^{k-m}P_k\\ =\sum_{k=0}^\infty(xT+1-T)^kP_k\\ =G_0(1+(x-1)T)\\ And~G_0(x;1)=G_0(x)\\ ~G_0(1;T)=G_0(1)\\ ~G_0'(1;T)=TG_0'(1)\\ Similarly, G_1(x;T)=G_1(1+(x-1)T)\\ ~G_1(x;1)=G_1(x)\\ ~G_1(1;T)=G_1(1)\\ ~G_1'(1;T)=TG_1'(1)\\ Pm0=P[m of k links occupied]=CmkTm(1T)kmG0(x;T)=E[xm]=E[E[xmk]]=k=0E[xmk]pk=k=0m=0kxmPmkPk=k=0m=0kCmkTm(1T)kmxmPk=k=0m=0kCmk(xT)m(1T)kmPk=k=0(xT+1T)kPk=G0(1+(x1)T)And G0(x;1)=G0(x) G0(1;T)=G0(1) G0(1;T)=TG0(1)Similarly,G1(x;T)=G1(1+(x1)T) G1(x;1)=G1(x) G1(1;T)=G1(1) G1(1;T)=TG1(1)
Let P s ( T ) P_s(T) Ps(T) be the distribution of outbreak size s s s, H 0 ( x ; T ) H_0(x;T) H0(x;T) is the corresponding MGF. By definition, H 1 ( x ; T ) H_1(x;T) H1(x;T) is the MGF for the outbreak size reached by following a random edge.
KaTeX parse error: No such environment: align at position 8: \begin{̲a̲l̲i̲g̲n̲}̲ H_0(x;T)&=\sum…

Scale-free Network

A scale-free network is a network whose degree distribution follows a power law distribution. This type of network has three important features: 1) has super nodes which have many more connections than others and this is called “preferential attachment”; 2) the number of links connecting to a node follows a power-law distribution or clustering coefficient distribution; 3) the degree distribution has a heavy tail. Since many research find that social network is a specific kind of scale-free network, we here study the spread of covid-19 in a scale-free network and conduct a experiment based on Shenzhen data later.

For the degree distribution to be power-law distribution, p k = C k − ν p_k=Ck^{-\nu} pk=Ckν . For normalization property, G ( 1 ) = ∑ k = 0 ∞ C k − ν = 1 G(1)=\sum_{k=0}^\infty Ck^{-\nu}=1 G(1)=k=0Ckν=1 so C = 1 ∑ k = 0 ∞ k − ν C=\frac{1} {\sum_{k=0}^ \infty k^{-\nu}} C=k=0kν1.
G 0 ( x ) = ∑ k = 0 ∞ C k − ν x k = ∑ k = 0 ∞ k − ν x k ∑ k = 0 ∞ k − ν z 1 ( x ) = G 0 ′ ( 1 ) = ∑ k = 0 ∞ k ∗ k − ν x k − 1 ∑ k = 0 ∞ k − ν ∣ x = 1 = ∑ k = 0 ∞ k − ν + 1 ∑ k = 0 ∞ k − ν = ξ ( ν − 1 ) ξ ( ν ) z 2 ( x ) = G 0 ′ ′ ( 1 ) = ∑ k = 0 ∞ k ∗ ( k − 1 ) ∗ k − ν x k − 2 ∑ k = 0 ∞ k − ν ∣ x = 1 = ∑ k = 0 ∞ k − ν + 2 − k − ν + 1 ∑ k = 0 ∞ k − ν = ξ ( ν − 2 ) − ξ ( ν − 1 ) ξ ( ν ) G_0(x)=\sum_{k=0}^\infty Ck^{-\nu}x^k=\frac{\sum_{k=0}^ \infty k^{-\nu}x^k}{\sum_{k=0}^ \infty k^{-\nu}}\\ z_1(x)=G_0'(1)=\frac{\sum_{k=0}^ \infty k*k^{-\nu}x^{k-1}}{\sum_{k=0}^ \infty k^{-\nu}}|_{x=1}\\ =\frac{\sum_{k=0}^ \infty k^{-\nu+1}}{\sum_{k=0}^ \infty k^{-\nu}}\\ =\frac{\xi(\nu-1)}{\xi(\nu)}\\ z_2(x)=G_0''(1)=\frac{\sum_{k=0}^ \infty k*(k-1)*k^{-\nu}x^{k-2}}{\sum_{k=0}^ \infty k^{-\nu}}|_{x=1}\\ =\frac{\sum_{k=0}^ \infty k^{-\nu+2}-k^{-\nu+1}}{\sum_{k=0}^ \infty k^{-\nu}}\\ =\frac{\xi(\nu-2)-\xi(\nu-1)}{\xi(\nu)}\\ G0(x)=k=0Ckνxk=k=0kνk=0kνxkz1(x)=G0(1)=k=0kνk=0kkνxk1x=1=k=0kνk=0kν+1=ξ(ν)ξ(ν1)z2(x)=G0(1)=k=0kνk=0k(k1)kνxk2x=1=k=0kνk=0kν+2kν+1=ξ(ν)ξ(ν2)ξ(ν1)
Assume r i j ∼ P r ( r ) = 1 r m   0 ≤ r ≤ r m , τ i ∼ P τ ( τ ) = 2 τ τ m 2 r_{ij} \sim P_r(r)=\frac{1}{r_m} ~0\leq r\leq r_m,\tau_i\sim P_{\tau}(\tau)=\frac{2\tau}{\tau_m^2} rijPr(r)=rm1 0rrm,τiPτ(τ)=τm22τ
T h e   a v e r a g e   t r a n s i m i s s i b i l i t y   i s T = 1 − ∫ 0 ∞ ∫ 0 ∞ e − r t P r ( r ) P τ ( τ ) d r d τ = 1 − 2 r m 2 τ m 2 ( e − r m τ m − 1 + r m τ m ) I n   t h i s   c a s e , T c = G 0 ′ ( 1 ) G 0 ′ ′ ( 1 ) = ξ ( ν − 1 ) ξ ( ν − 2 ) − ξ ( ν − 1 ) A v e r a g e   o u t b r e a k   s i z e   E [ s ] = 1 + T ( ξ ( ν − 1 ) ) 2 ξ ( ν ) [ ( T + 1 ) ξ ( ν − 1 ) − T ξ ( ν − 2 ) ] The~average~transimissibility~is T =1-\int_0^\infty \int_0^\infty e^{-rt}P_r(r)P_{\tau}(\tau)drd\tau\\ =1-\frac{2}{r_m^2\tau_m^2}(e^{-r_m\tau_m}-1+r_m\tau_m)\\ In~this~case,T_c=\frac{G_0'(1)}{G_0''(1)}=\frac{\xi(\nu-1)}{\xi(\nu-2)-\xi(\nu-1)}\\ Average~outbreak~size~E[s]=1+\frac{T(\xi(\nu-1))^2}{\xi(\nu)[(T+1)\xi(\nu-1)-T\xi(\nu-2)]}\\ The average transimissibility isT=100ertPr(r)Pτ(τ)drdτ=1rm2τm22(ermτm1+rmτm)In this case,Tc=G0(1)G0(1)=ξ(ν2)ξ(ν1)ξ(ν1)Average outbreak size E[s]=1+ξ(ν)[(T+1)ξ(ν1)Tξ(ν2)]T(ξ(ν1))2
Here, we know the number of first neighbor and second neighbor, we would estimate the parameter in the power-law distribution by method of moment and maximizing log likelihood.
For sampling distribution of continuous power law
p k = ν − 1 k m i n ( k k m i n ) − ν w h e r e   c = ν − 1 k m i n − ν + 1 F o r   m − t h   m o m e n t   z m = ∫ x m i n ∞ x m ν − 1 x m i n ( x x m i n ) − ν = ν − 1 ν − 1 − m x m i n m F o r   m e t h o d   o f   m o m e n t s   E [ x ] = ν − 1 ν − 2 x m i n E [ x 2 ] = ν − 1 ν − 3 x m i n 2 v a r ( x ) = ν − 1 ( ν − 3 ) ( ν − 2 ) 2 x m i n 2 ∴ x ^ m i n = ∑ x i 2 ( ν − 3 ) ∑ x i ( ν − 2 ) ∴ ν ^   s a t i s f i e s ( ν − 2 ) 2 ( ν − 1 ) ( ν − 3 ) = n ∑ x i 2 ( ∑ x i ) 2 v ^ = − 2 ( ∑ x i ) 2 + 2 n ∑ x i 2 ± − n ( ∑ x i ) 2 ∑ x i 2 + n 2 ( ∑ x i 2 ) 2 − ( ∑ x i ) 2 + n ∑ x i 2 p_k=\frac{\nu-1}{k_{min}}(\frac{k}{k_{min}})^{-\nu}where ~c=\frac{\nu-1}{k_{min}^{-\nu+1}}\\ For~m-th~moment ~z_m=\int_{x_{min}}^\infty x^m\frac{\nu-1}{x_{min}}(\frac{x}{x_{min}})^{-\nu}=\frac{\nu-1}{\nu-1-m}x_{min}^m\\ For ~method~of~moments~E[x]=\frac{\nu-1}{\nu-2}x_{min}\\ E[x^2]=\frac{\nu-1}{\nu-3}x_{min}^2\\ var(x)=\frac{\nu-1}{(\nu-3)(\nu-2)^2}x_{min}^2\\ \therefore \hat{x}_{min}=\frac{\sum x_i^2(\nu-3)}{\sum x_i(\nu-2)}\\ \therefore \hat{\nu}~satisfies \frac{(\nu-2)^2}{(\nu-1)(\nu-3)}=n\frac{\sum x_i^2}{(\sum x_i)^2}\\ \hat{v}=\frac{-2(\sum x_i)^2+2n\sum x_i^2 \pm \sqrt{-n(\sum x_i)^2 \sum x_i^2+n^2 (\sum x_i^2)^2}}{-(\sum x_i)^2+n\sum x_i^2} pk=kminν1(kmink)νwhere c=kminν+1ν1For mth moment zm=xminxmxminν1(xminx)ν=ν1mν1xminmFor method of moments E[x]=ν2ν1xminE[x2]=ν3ν1xmin2var(x)=(ν3)(ν2)2ν1xmin2x^min=xi(ν2)xi2(ν3)ν^ satisfies(ν1)(ν3)(ν2)2=n(xi)2xi2v^=(xi)2+nxi22(xi)2+2nxi2±n(xi)2xi2+n2(xi2)2

F o r   m a x i m i z i n g   l o g − l i k e l i h o o d   e s t i m a t o r W i t h   c o n t i n u s   a s s u m p t i o n p ( x ) = ∏ i = 1 n ν − 1 x m i n ( x x m i n ) − ν l o g p ( x ) = n l o g ( ν − 1 ) − n l o g x m i n − ν ∑ i = 1 ∞ l o g x i x m i n ∂ l o g p ( x ) ∂ x m i n = − n x m i n + ν x m i n ∑ i = 1 ∞ 1 x i = 0 ∂ l o g p ( x ) ∂ ν = n ν − 1 − ∑ i = 1 ∞ l o g x i x m i n ν = 1 + n [ ∑ i = 1 n l n x i x m i n ] − 1 W i t h   d i s c r e t e   a s s u m t i o n ν = 1 + n [ ∑ i = 1 n l n x i x m i n − 1 2 ] − 1 L e t   u s   a s s u m e   x m i n = 1 , ν ^ = 1 + n l n ( ∑ x i ) For~maximizing ~log-likelihood~estimator\\ With~continus~assumption\\ p(x)=\prod_{i=1}^n\frac{\nu-1}{x_{min}}(\frac{x}{x_{min}})^{-\nu}\\ logp(x)=nlog(\nu-1)-nlogx_{min}-\nu\sum_{i=1}^\infty log\frac{x_i}{x_{min}}\\ \frac{\partial logp(x)}{\partial x_{min}}=\frac{-n}{x_{min}}+\frac{\nu}{x_{min}}\sum_{i=1}^\infty \frac{1}{x_i}=0\\ \frac{\partial logp(x)}{\partial \nu}=\frac{n}{\nu-1}-\sum_{i=1}^\infty log\frac{x_i}{x_{min}}\\ \nu=1+n[\sum_{i=1}^nln\frac{x_i}{x_{min}}]^{-1}\\ With~discrete~assumtion\\ \nu=1+n[\sum_{i=1}^nln\frac{x_i}{x_{min}-\frac{1}{2}}]^{-1}\\ Let~us~assume~x_{min}=1,\hat{\nu}=1+\frac{n}{ln(\sum x_i)}\\ For maximizing loglikelihood estimatorWith continus assumptionp(x)=i=1nxminν1(xminx)νlogp(x)=nlog(ν1)nlogxminνi=1logxminxixminlogp(x)=xminn+xminνi=1xi1=0νlogp(x)=ν1ni=1logxminxiν=1+n[i=1nlnxminxi]1With discrete assumtionν=1+n[i=1nlnxmin21xi]1Let us assume xmin=1,ν^=1+ln(xi)n

T c ^ = G 0 ′ ( 1 ) G 0 ′ ′ ( 1 ) = ξ ( ν − 1 ) ξ ( ν − 2 ) − ξ ( ν − 1 ) = ν ^ − 3 ν ^ − 2 1 x ^ m i n E [ s ] ^ = 1 − ( ν ^ − 1 ) ( ν ^ − 3 ) ν ^ − 2 \hat{T_c}=\frac{G_0'(1)}{G_0''(1)}=\frac{\xi(\nu-1)}{\xi(\nu-2)-\xi(\nu-1)} \\ =\frac{\hat{\nu}-3}{\hat{\nu}-2}\frac{1}{\hat{x}_{min}}\\ \hat{E[s]}=1-\frac{(\hat{\nu}-1)(\hat{\nu}-3)}{\hat{\nu}-2}\\ Tc^=G0(1)G0(1)=ξ(ν2)ξ(ν1)ξ(ν1)=ν^2ν^3x^min1E[s]^=1ν^2(ν^1)(ν^3)

Reference

.
欢迎关注二幺子的知识输出通道:
avatar

已标记关键词 清除标记
简介 笔者当初为了学习JAVA,收集了很多经典源码,源码难易程度分为初级、中级、高级等,详情看源码列表,需要的可以直接下载! 这些源码反映了那时那景笔者对未来的盲目,对代码的热情、执着,对IT的憧憬、向往!此时此景,笔者只专注Android、Iphone等移动平台开发,看着这些源码心中有万分感慨,写此文章纪念那时那景! Java 源码包 Applet钢琴模拟程序java源码 2个目标文件,提供基本的音乐编辑功能。编辑音乐软件的朋友,这款实例会对你有所帮助。 Calendar万年历 1个目标文件 EJB 模拟银行ATM流程及操作源代码 6个目标文件,EJB来模拟银行ATM机的流程及操作:获取系统属性,初始化JNDI,取得Home对象的引用,创建EJB对象,并将当前的计数器初始化,调用每一个EJB对象的count()方法,保证Bean正常被激活和钝化,EJB对象是用完毕,从内存中清除,从账户中取出amt,如果amt>账户余额抛出异常,一个实体Bean可以表示不同的数据实例,我们应该通过主键来判断删除哪个数据实例…… ejbCreate函数用于初始化一个EJB实例 5个目标文件,演示Address EJB的实现 ,创建一个EJB测试客户端,得到名字上下文,查询jndi名,通过强制转型得到Home接口,getInitialContext()函数返回一个经过初始化的上下文,用client的getHome()函数调用Home接口函数得到远程接口的引用,用远程接口的引用访问EJB。 EJB中JNDI的使用源码例子 1个目标文件,JNDI的使用例子,有源代码,可以下载参考,JNDI的使用,初始化Context,它是连接JNDI树的起始点,查找你要的对象,打印找到的对象,关闭Context…… ftp文件传输 2个目标文件,FTP的目标是:(1)提高文件的共享性(计算机程序和/或数据),(2)鼓励间接地(通过程序)使用远程计算机,(3)保护用户因主机之间的文件存储系统导致的变化,(4)为了可靠和高效地传输,虽然用户可以在终端上直接地使用它,但是它的主要作用是供程序使用的。本规范尝试满足大型主机、微型主机、个人工作站、和TACs 的不同需求。例如,容易实现协议的设计。 Java EJB中有、无状态SessionBean的两个例子 两个例子,无状态SessionBean可会话Bean必须实现SessionBean,获取系统属性,初始化JNDI,取得Home对象的引用,创建EJB对象,计算利息等;在有状态SessionBean中,用累加器,以对话状态存储起来,创建EJB对象,并将当前的计数器初始化,调用每一个EJB对象的count()方法,保证Bean正常被激活和钝化,EJB对象是用完毕,从内存中清除…… Java Socket 聊天通信演示代码 2个目标文件,一个服务器,一个客户端。 Java Telnet客户端实例源码 一个目标文件,演示Socket的使用。 Java 组播组中发送和接受数据实例 3个目标文件。 Java读写文本文件的示例代码 1个目标文件。 java俄罗斯方块 一个目标文件。 Java非对称加密源码实例 1个目标文件 摘要:Java源码,算法相关,非对称加密   Java非对称加密源程序代码实例,本例中使用RSA加密技术,定义加密算法可用 DES,DESede,Blowfish等。   设定字符串为“张三,你好,我是李四”   产生张三的密钥对(keyPairZhang)   张三生成公钥(publicKeyZhang)并发送给李四,这里发送的是公钥的数组字节   通过网络或磁盘等方式,把公钥编码传送给李四,李四接收到张三编码后的公钥,将其解码,李四用张三的公钥加密信息,并发送给李四,张三用自己的私钥解密从李四处收到的信息…… Java利用DES私钥对称加密代码实例 同上 java聊天室 2个目标文件,简单。 java模拟掷骰子2个 1个目标文件,输出演示。 java凭图游戏 一个目标文件,简单。 java求一个整数的因子 如题。 Java生成密钥的实例 1个目标文件 摘要:Java源码,算法相关,密钥   Java生成密钥、保存密钥的实例源码,通过本源码可以了解到Java如何产生单钥加密的密钥(myKey)、产生双钥的密钥对(keyPair)、如何保存公钥的字节数组、保存私钥到文件privateKey.dat、如何用Java对象序列化保存私钥,通常应对私钥加密后再保存、如何从文件中得到公钥编码的字节数组、如何从字节数组解码公钥。 Java数据压缩与传输实例 1个目标文件 摘要:Java源码,文件操作,数据压缩,文件传输   Java数据压缩与传输实例,可以学习一下实例化套按字、得到文件输入流、压缩输入流、文件输出流、实例化缓冲
相关推荐
<p> <strong><span style="font-size:16px;color:#003399;">会用Python分析金融数据 or 金融行业会用Python</span></strong> </p> <p> <strong><span style="font-size:16px;color:#003399;">职场竞争力更高</span></strong> </p> <p> <br /> </p> <p> <img src="https://img-bss.csdnimg.cn/202012231042221925.png" alt="" /> </p> <p> <br /> </p> <p> <br /> </p> <p> <strong><span style="font-size:16px;color:#003399;">Python金融数据分析入门到实战</span></strong> </p> <p> <strong><span style="font-size:16px;color:#003399;">Get√金融行业数据分析必备技能</span></strong> </p> <p> <img src="https://img-bss.csdnimg.cn/202012231042438069.png" alt="" /> </p> <p> <br /> </p> <p> <br /> </p> <p> <strong><span style="font-size:16px;color:#003399;">以股票量化交易为应用场景</span></strong> </p> <p> <strong><span style="font-size:16px;color:#003399;">完成技术指标实现的全过程</span></strong> </p> <p> <br /> </p> <p> <span style="font-size:14px;">课程选取股票量化交易为应用场景,由股票数据的获取、技术指标的实现,逐步进阶到策略的设计</span><span style="font-size:14px;">和回测,由浅入深、由技术到思维地为同学们讲解Python金融数据分析在股票量化交易中的应用</span><span style="font-size:14px;">。</span> </p> <p> <br /> </p> <p> <span style="font-size:14px;"><br /> </span> </p> <p> <img src="https://img-bss.csdnimg.cn/202012231043183686.png" alt="" /> </p> <p> <br /> </p> <p> <br /> </p> <p> <strong><span style="font-size:16px;color:#003399;">以Python为编程语言</span></strong> </p> <p> <strong><span style="font-size:16px;color:#003399;">解锁3大主流数据分析工具</span></strong> </p> <p> <br /> </p> <p> <span style="font-size:14px;">Python做金融具有先天优势,课程提取了Python数据分析工具NumPy、Pandas及可视化工具</span><span style="font-size:14px;">Matplotlib的关键点详细讲解,帮助同学掌握数据分析的关键技能。</span> </p> <p> <img src="https://img-bss.csdnimg.cn/202012231043472858.png" alt="" /> </p> <p> <strong><span style="font-size:16px;color:#003399;"><br /> </span></strong> </p> <p> <strong><span style="font-size:16px;color:#003399;">2大购课福利</span></strong> </p> <p> <strong><span style="font-size:16px;color:#003399;"><br /> </span></strong> </p> <p> <img src="https://img-bss.csdnimg.cn/202012300628195864.png" alt="" /> </p>
<p> <span style="color:#0000ff;">需要学习ubuntu系统上YOLOv4的同学请前往:《YOLOv4目标检测实战:原理与源码解析》</span> </p> <h3> <span style="color:#3598db;">【为什么要学习这门课】</span> </h3> <p> Linux创始人Linus Torvalds有一句名言:Talk is cheap. Show me the code. <strong><span style="color:#ba372a;">冗谈不够,放码过来!</span></strong> </p> <p> 代码阅读是从基础到提高的必由之路。尤其对深度学习,许多框架隐藏了神经网络底层的实现,只能在上层调包使用,对其内部原理很难认识清晰,不利于进一步优化和创新。 </p> <p> YOLOv4是最近推出的基于深度学习的端到端实时目标检测方法。 </p> <p> YOLOv4的实现darknet是使用C语言开发的轻型开源深度学习框架,依赖少,可移植性好,可以作为很好的代码阅读案例,让我们深入探究其实现原理。 </p> <h3> <span style="color:#3598db;">【课程内容与收获】</span> </h3> <p> 本课程将解析YOLOv4的实现原理和源码,具体内容包括: </p> <p> - YOLOv4目标检测原理 </p> <p> - 神经网络及darknet的C语言实现,尤其是反向传播的梯度求解和误差计算 </p> <p> - 代码阅读工具及方法 </p> <p> - 深度学习计算的利器:BLAS和GEMM </p> <p> - GPU的CUDA编程方法及在darknet的应用 </p> <p> - YOLOv4的程序流程 </p> <p> - YOLOv4各层及关键技术的源码解析 </p> <p> 本课程将提供注释后的darknet的源码程序文件。 </p> <h3> <span style="color:#3598db;">【相关课程】</span> </h3> <p> 除本课程《Windows版YOLOv4目标检测:原理与源码解析》外,本人推出了有关YOLOv4目标检测的系列课程,包括: </p> <p> 《Windows版YOLOv4目标检测实战:训练自己的数据集》 </p> <p> 《Windows版YOLOv4-Tiny目标检测实战:训练自己的数据集》 </p> <p> 《Windows版YOLOv4目标检测实战:人脸口罩佩戴检测》<br /> 《Windows版YOLOv4目标检测实战:中国交通标志识别》 </p> <p> 建议先学习一门YOLOv4实战课程,对YOLOv4的使用方法了解以后再学习本课程。 </p> <h3> <span style="color:#3598db;">【YOLOv4网络模型架构图】</span> </h3> <p> 下图由白勇老师绘制<img alt="" src="https://img-bss.csdnimg.cn/202006291533009066.jpg" /> </p> <p>   </p>
<p> <strong><span style="font-size:20px;color:#FF0000;">本课程主要针对计算机相关专业的正在做毕设的学生与需要项目实战练习的Java学习者</span></strong> </p> <p> <span style="color:#FF0000;"><strong><span style="font-size:18px;">1. 包含:<span style="color:#FFFF00;background-color:#FF0000;">项目源码、</span><span style="color:#FFFF00;background-color:#FF0000;">项目文档、数据库脚本、软件工具</span>等所有资料</span></strong></span> </p> <p> <span style="color:#FF0000;"><strong><span style="font-size:18px;">2. 手把手的带你从零开始部署运行本套系统</span></strong></span> </p> <p> <span style="color:#FF0000;"><strong><span style="font-size:18px;">3. 该项目附带的源码资料可作为毕设使用</span></strong></span> </p> <p> <span style="color:#FF0000;"><strong><span style="font-size:18px;">4. 提供技术答疑和远程协助指导</span></strong></span><strong><span style="font-size:18px;"></span></strong> </p> <p> <br /> </p> <p> <span style="font-size:18px;"><strong>项目运行截图:</strong></span> </p> <p> <strong><span style="font-size:18px;">1)系统登陆界面</span></strong> </p> <p> <strong><span style="font-size:18px;"><img src="https://img-bss.csdn.net/202002241015433522.png" alt="" /><br /> </span></strong> </p> <p> <strong><span style="font-size:18px;"><strong><span style="font-size:18px;">2)学生模块</span></strong></span></strong> </p> <p> <strong><span style="font-size:18px;"><img src="https://img-bss.csdn.net/202002241015575966.png" alt="" /></span></strong> </p> <p> <strong><span style="font-size:18px;"><strong><span style="font-size:18px;">3)教师模块</span></strong></span></strong> </p> <p> <strong><span style="font-size:18px;"><img src="https://img-bss.csdn.net/202002241016127898.png" alt="" /></span></strong> </p> <p> <strong><span style="font-size:18px;"><strong><span style="font-size:18px;">4)系统管理员</span></strong></span></strong> </p> <p> <strong><span style="font-size:18px;"><img src="https://img-bss.csdn.net/202002241016281177.png" alt="" /></span></strong> </p> <p> <strong><span style="font-size:18px;"><img src="https://img-bss.csdn.net/202002241016369884.png" alt="" /></span></strong> </p> <p> <strong><span style="font-size:18px;"><br /> </span></strong> </p> <p> <strong><span style="font-size:18px;"><strong><span style="font-size:18px;">更多Java毕设项目请关注我的毕设系列课程 <a href="https://edu.csdn.net/lecturer/2104">https://edu.csdn.net/lecturer/2104</a></span></strong></span></strong> </p> <p> <strong><span style="font-size:18px;"><br /> </span></strong> </p>
©️2020 CSDN 皮肤主题: 数字20 设计师:CSDN官方博客 返回首页