github地址
SIR model on Network
We here reconsider the SIR model in network where k k k is the number of neighbor and v ( t ) v(t) v(t) is the average number of infected neighbor, v v v is the average ratio of infected neighbor, w ( t ) w(t) w(t) is the average number of neighbors recovered. We have:
d
s
k
d
t
=
−
β
k
v
s
k
d
i
k
d
t
=
β
k
v
s
k
−
γ
i
k
d
r
k
d
t
=
γ
i
k
v
(
t
)
=
∑
k
=
0
∞
q
k
i
k
(
t
)
w
(
t
)
=
∑
k
=
0
∞
q
k
r
k
(
t
)
T
a
k
e
t
h
e
d
e
r
i
v
a
t
i
v
e
o
f
w
(
t
)
=
∑
k
=
0
∞
q
k
r
k
(
t
)
d
w
d
t
=
∑
k
=
0
∞
q
k
d
r
k
d
t
=
γ
∑
k
=
0
∞
q
k
i
k
=
γ
v
(
t
)
∴
v
(
t
)
=
1
γ
d
w
d
t
d
s
k
d
t
=
−
β
k
v
s
k
⇔
d
s
k
d
t
=
−
β
k
1
γ
d
w
d
t
s
k
\frac{ds_k}{dt}=-\beta kvs_k\\ \frac{di_k}{dt}=\beta kvs_k-\gamma i_k\\ \frac{dr_k}{dt}=\gamma i_k\\ v(t)=\sum_{k=0}^\infin q_k i_k(t)\\ w(t)=\sum_{k=0}^\infin q_k r_k(t)\\ Take~the~derivative~of~ w(t)=\sum_{k=0}^\infin q_k r_k(t)\\ \frac{dw}{dt}=\sum_{k=0}^\infin q_k \frac{dr_k}{dt}=\gamma \sum_{k=0}^\infin q_ki_k=\gamma v(t)\\ \therefore v(t)=\frac{1}{\gamma}\frac{dw}{dt}\\ \frac{ds_k}{dt}=-\beta kvs_k\Leftrightarrow \frac{ds_k}{dt}=-\beta k\frac{1} {\gamma}\frac{dw}{dt}s_k\\
dtdsk=−βkvskdtdik=βkvsk−γikdtdrk=γikv(t)=k=0∑∞qkik(t)w(t)=k=0∑∞qkrk(t)Take the derivative of w(t)=k=0∑∞qkrk(t)dtdw=k=0∑∞qkdtdrk=γk=0∑∞qkik=γv(t)∴v(t)=γ1dtdwdtdsk=−βkvsk⇔dtdsk=−βkγ1dtdwsk
We could solve these equation and get:
s
k
=
s
0
e
−
β
γ
k
w
=
s
0
[
e
−
β
γ
w
]
k
=
s
0
[
u
(
t
)
]
k
w
h
e
r
e
u
(
t
)
=
e
−
β
γ
w
w
(
t
)
=
−
γ
β
l
n
u
s_k=s_0e^{-\frac{\beta}{\gamma}kw}\\ =s_0[e^{-\frac{\beta}{\gamma}w}]^k\\ =s_0[u(t)]^k~\\ where~u(t)=e^{-\frac{\beta}{\gamma}w}\\ ~w(t)=-\frac{\gamma}{\beta}ln u\\
sk=s0e−γβkw=s0[e−γβw]k=s0[u(t)]k where u(t)=e−γβw w(t)=−βγlnu
With
s
+
i
+
r
=
1
s+i+r=1
s+i+r=1, we could drive:
v ( t ) = ∑ k = 0 ∞ q k i k ( t ) = ∑ k = 0 ∞ q k ( 1 − r k − s k ) = 1 − w ( t ) − s 0 ∑ k = 0 ∞ q k u k = 1 + γ β l n u − s 0 G 1 ( u ) ∵ w ( t ) = − γ β l n u d w d t = γ v ( t ) ⇔ − γ β 1 u d u d t = − γ [ 1 + γ β l n u − s 0 G 1 ( u ) ] ∴ d u d t = − β u [ 1 + γ β l n u − s 0 G 1 ( u ) ] v(t)=\sum_{k=0}^\infin q_k i_k(t)\\ =\sum_{k=0}^\infin q_k(1-r_k-s_k)\\ =1-w(t)-s_0\sum_{k=0}^\infin q_ku^k\\ =1+\frac{\gamma}{\beta}ln u-s_0G_1(u)\\ \because w(t)=-\frac{\gamma}{\beta}ln u\\ \frac{dw}{dt}=\gamma v(t)\Leftrightarrow -\frac{\gamma}{\beta}\frac{1}{u}\frac{du}{dt}=-\gamma[1+\frac{\gamma}{\beta}ln u-s_0G_1(u)]\\ \therefore \frac{du}{dt}=-\beta u[1+\frac{\gamma}{\beta}ln u-s_0G_1(u)] v(t)=k=0∑∞qkik(t)=k=0∑∞qk(1−rk−sk)=1−w(t)−s0k=0∑∞qkuk=1+βγlnu−s0G1(u)∵w(t)=−βγlnudtdw=γv(t)⇔−βγu1dtdu=−γ[1+βγlnu−s0G1(u)]∴dtdu=−βu[1+βγlnu−s0G1(u)]
Set u = 1 − ϵ u=1-\epsilon u=1−ϵ we could get
d ϵ d t = [ β G 1 ′ ( 1 ) − γ ] ϵ a s s u m e s 0 = 1 u ( t ) = 1 − ϵ ( t ) = 1 − e ( β G 1 ′ ( 1 ) − γ ) t s k ( t ) = u k = [ 1 − e ( β G 1 ′ ( 1 ) − γ ) t ] k ≃ 1 − e k ( β G 1 ′ ( 1 ) − γ ) t \frac{d\epsilon }{dt}=[\beta G_1'(1)-\gamma]\epsilon \\ assume~s_0=1\\ u(t)=1-\epsilon (t)=1-e^{(\beta G_1'(1)-\gamma)t}\\ s_k(t)=u^k=[1-e^{(\beta G_1'(1)-\gamma)t}]^k\simeq 1-e^{k(\beta G_1'(1)-\gamma)t}\\ dtdϵ=[βG1′(1)−γ]ϵassume s0=1u(t)=1−ϵ(t)=1−e(βG1′(1)−γ)tsk(t)=uk=[1−e(βG1′(1)−γ)t]k≃1−ek(βG1′(1)−γ)t
S e t s 0 = 1 d u d t = − β u [ 1 + γ β l n u − G 1 ( u ) ] s + i + r = 1 s = u k Set~s_0=1\\ \frac{du}{dt}=-\beta u[1+\frac{\gamma}{\beta}ln u-G_1(u)]\\ s+i+r=1\\ s=u^k Set s0=1dtdu=−βu[1+βγlnu−G1(u)]s+i+r=1s=uk
With the above equations, we could fit the lines of the rate of susceptible, infectious and recovered people and get the parameter estimation of γ \gamma γ and β \beta β. ( γ \gamma γ in the MGF method is just parameter for τ i \tau_i τi, since p ( τ ) d τ = γ e γ τ d τ p(\tau)d\tau=\gamma e^{\gamma \tau}d\tau p(τ)dτ=γeγτdτ, β \beta β is the T i j T_{ij} Tij which is simplified for the paired transmission)
If we set
s
k
(
t
)
=
0
s_k(t)=0
sk(t)=0, we could get
β
γ
=
1
G
1
′
(
1
)
\frac{\beta}{\gamma}=\frac{1}{G_1'(1)}\\
γβ=G1′(1)1
Thus, average outbreak size here is
β
γ
\frac{\beta}{\gamma}
γβ.
Here, we could rewrite the model of SIR on network:
s
k
(
t
)
=
u
(
t
)
k
d
u
d
t
=
−
β
u
[
1
+
γ
β
l
n
u
−
s
0
G
1
(
u
)
]
u
(
t
)
=
1
−
e
(
β
G
1
′
(
1
)
−
γ
)
t
d
i
k
d
t
=
k
u
(
t
)
k
−
1
d
u
d
t
−
γ
i
k
d
r
k
d
t
=
γ
i
k
s
+
i
+
r
=
1
s_k(t)=u(t)^k\\ \frac{du}{dt}=-\beta u[1+\frac{\gamma}{\beta}ln u-s_0G_1(u)]\\ u(t)=1-e^{(\beta G_1'(1)-\gamma)t}\\ \frac{di_k}{dt}=ku(t)^{k-1}\frac{du}{dt}-\gamma i_k\\ \frac{dr_k}{dt}=\gamma i_k\\ s+i+r=1\\
sk(t)=u(t)kdtdu=−βu[1+βγlnu−s0G1(u)]u(t)=1−e(βG1′(1)−γ)tdtdik=ku(t)k−1dtdu−γikdtdrk=γiks+i+r=1
Also, we could drive their iteration form with
S
=
s
N
,
I
=
i
N
,
R
=
r
N
S=sN, I=iN, R=rN
S=sN,I=iN,R=rN and let
c
c
c be the number of people one contact:
U
n
=
U
n
−
1
−
β
U
n
−
1
[
1
+
γ
β
l
n
U
n
−
1
−
s
0
G
1
(
U
n
−
1
)
]
S
n
=
U
n
k
I
n
=
I
n
−
1
−
k
U
n
−
1
(
t
)
k
β
U
n
−
1
[
1
+
γ
β
l
n
U
n
−
1
−
s
0
G
1
(
U
n
−
1
)
]
−
γ
I
n
−
1
R
n
=
R
n
−
1
+
γ
I
n
−
1
U_n=U_{n-1}-\beta U_{n-1}[1+\frac{\gamma}{\beta}ln U_{n-1}-s_0G_1(U_{n-1})]\\ S_n=U_n^k\\ I_n=I_{n-1}-kU_{n-1}(t)^k\beta U_{n-1}[1+\frac{\gamma}{\beta}ln U_{n-1}-s_0G_1(U_{n-1})]-\gamma I_{n-1}\\ R_n=R_{n-1}+\gamma I_{n-1}\\
Un=Un−1−βUn−1[1+βγlnUn−1−s0G1(Un−1)]Sn=UnkIn=In−1−kUn−1(t)kβUn−1[1+βγlnUn−1−s0G1(Un−1)]−γIn−1Rn=Rn−1+γIn−1
SEIR model on Network
We here reconsider the SEIR model in network where k k k is the number of neighbor and v ( t ) v(t) v(t) is the average number of infected neighbor, v v v is the average ratio of infected neighbor, m ( t ) m(t) m(t) is the average number of exposed neighbor, w ( t ) w(t) w(t) is the average number of neighbors recovered. We have:
d s k d t = − β k v s k d e k d t = β k v s k − α e k d i k d t = α e k − γ i k d r k d t = γ i k v ( t ) = ∑ k = 0 ∞ q k i k ( t ) m ( t ) = ∑ k = 0 ∞ q k e k ( t ) w ( t ) = ∑ k = 0 ∞ q k r k ( t ) T a k e t h e d e r i v a t i v e o f w ( t ) = ∑ k = 0 ∞ q k r k ( t ) d w d t = ∑ k = 0 ∞ q k d r k d t = γ ∑ k = 0 ∞ q k i k = γ v ( t ) ∴ v ( t ) = 1 γ d w d t d s k d t = − β k v s k ⇔ d s k d t = − β k 1 γ d w d t s k T a k e t h e d e r i v a t i v e o f m ( t ) = ∑ k = 0 ∞ q k e k ( t ) d m ( t ) d t = ∑ k = 0 ∞ q k d e k d t = β k v ∑ k = 0 ∞ q k s k − ∑ k = 0 ∞ q k α e k = β k v ∑ k = 0 ∞ q k s k − α m ( t ) T a k e t h e d e r i v a t i v e o f v ( t ) = ∑ k = 0 ∞ q k i k ( t ) d v ( t ) d t = ∑ k = 0 ∞ q k d i k d t = α m ( t ) − γ v ( t ) m ( t ) = 1 α [ d v ( t ) d t + γ v ( t ) ] \frac{ds_k}{dt}=-\beta kvs_k\\ \frac{de_k}{dt}=\beta kvs_k-\alpha e_k\\ \frac{di_k}{dt}=\alpha e_k-\gamma i_k\\ \frac{dr_k}{dt}=\gamma i_k\\ v(t)=\sum_{k=0}^\infin q_k i_k(t)\\ m(t)=\sum_{k=0}^\infin q_k e_k(t)\\ w(t)=\sum_{k=0}^\infin q_k r_k(t)\\ Take~the~derivative~of~ w(t)=\sum_{k=0}^\infin q_k r_k(t)\\ \frac{dw}{dt}=\sum_{k=0}^\infin q_k \frac{dr_k}{dt}=\gamma \sum_{k=0}^\infin q_ki_k=\gamma v(t)\\ \therefore v(t)=\frac{1}{\gamma}\frac{dw}{dt}\\ \frac{ds_k}{dt}=-\beta kvs_k\Leftrightarrow \frac{ds_k}{dt}=-\beta k\frac{1}{\gamma}\frac{dw}{dt}s_k\\ Take~the~derivative~of~ m(t)=\sum_{k=0}^\infin q_k e_k(t)\\ \frac{dm(t)}{dt}=\sum_{k=0}^\infin q_k \frac{de_k}{dt}=\beta k v \sum_{k=0}^\infin q_ks_k-\sum_{k=0}^\infin q_k \alpha e_k\\ =\beta k v \sum_{k=0}^\infin q_ks_k-\alpha m(t)\\ Take~the~derivative~of~ v(t)=\sum_{k=0}^\infin q_k i_k(t)\\ \frac{dv(t)}{dt}=\sum_{k=0}^\infin q_k \frac{di_k}{dt}= \alpha m(t)-\gamma v(t)\\ m(t)=\frac{1}{\alpha}[\frac{dv(t)}{dt}+\gamma v(t)]\\ dtdsk=−βkvskdtdek=βkvsk−αekdtdik=αek−γikdtdrk=γikv(t)=k=0∑∞qkik(t)m(t)=k=0∑∞qkek(t)w(t)=k=0∑∞qkrk(t)Take the derivative of w(t)=k=0∑∞qkrk(t)dtdw=k=0∑∞qkdtdrk=γk=0∑∞qkik=γv(t)∴v(t)=γ1dtdwdtdsk=−βkvsk⇔dtdsk=−βkγ1dtdwskTake the derivative of m(t)=k=0∑∞qkek(t)dtdm(t)=k=0∑∞qkdtdek=βkvk=0∑∞qksk−k=0∑∞qkαek=βkvk=0∑∞qksk−αm(t)Take the derivative of v(t)=k=0∑∞qkik(t)dtdv(t)=k=0∑∞qkdtdik=αm(t)−γv(t)m(t)=α1[dtdv(t)+γv(t)]
We could solve these equation and get:
s k = s 0 e − β γ k w = s 0 [ e − β γ w ] k = s 0 [ u ( t ) ] k w h e r e u ( t ) = e − β γ w w ( t ) = − γ β l n u s_k=s_0e^{-\frac{\beta}{\gamma}kw}\\ =s_0[e^{-\frac{\beta}{\gamma}w}]^k\\ =s_0[u(t)]^k~\\ where~u(t)=e^{-\frac{\beta}{\gamma}w}\\ ~w(t)=-\frac{\gamma}{\beta}ln u\\ sk=s0e−γβkw=s0[e−γβw]k=s0[u(t)]k where u(t)=e−γβw w(t)=−βγlnu
With s + e + i + r = 1 s+e +i+r=1 s+e+i+r=1, we could drive:
v ( t ) = ∑ k = 0 ∞ q k i k ( t ) = ∑ k = 0 ∞ q k ( 1 − r k − e k − s k ) = 1 − w ( t ) − m ( t ) − s 0 ∑ k = 0 ∞ q k u k = 1 + γ β l n u − m ( t ) − s 0 G 1 ( u ) ∴ m ( t ) = 1 + γ β l n u − s 0 G 1 ( u ) − v ( t ) ∵ m ( t ) = 1 α [ d v ( t ) d t + γ v ( t ) ] ∴ ( γ α + 1 ) v ( t ) + 1 α d v ( t ) d t = 1 + γ β l n u − s 0 G 1 ( u ) F o r O D E f u n c t i o n d v d t + p ( t ) v = q ( t ) T h e s o l u t i o n i s v ( t ) = e − ∫ p ( x ) d x C + e − ∫ p ( x ) d x ∫ q ( x ) e ∫ p ( x ) d x d x H e r e p ( t ) = γ + α q ( t ) = [ 1 + γ β l n u − s 0 G 1 ( u ) ] α ∵ w ( t ) = − γ β l n u d w d t = γ v ( t ) ⇔ − γ β 1 u d u d t = − γ v ( t ) ∴ d u d t = β u v ( t ) = β u e − ∫ ( γ + α ) d x C + e − ∫ ( γ + α ) d x ∫ [ [ 1 + γ β l n u − s 0 G 1 ( u ) ] α ] e ∫ ( γ + α ) d x d x = C β u e − ( γ + α ) t + e − ( γ + α ) t ∫ [ [ 1 + γ β l n u ( t ) − s 0 G 1 ( u ( t ) ) ] α ] e ( γ + α ) t d t v(t)=\sum_{k=0}^\infin q_k i_k(t)\\ =\sum_{k=0}^\infin q_k(1-r_k-e_k-s_k)\\ =1-w(t)-m(t)-s_0\sum_{k=0}^\infin q_ku^k\\ =1+\frac{\gamma}{\beta}ln u-m(t)-s_0G_1(u)\\ \therefore m(t)=1+\frac{\gamma}{\beta}ln u-s_0G_1(u)-v(t)\\ \because m(t)=\frac{1}{\alpha}[\frac{dv(t)}{dt}+\gamma v(t)]\\ \therefore (\frac{\gamma}{\alpha}+1)v(t)+\frac{1}{\alpha}\frac{dv(t)}{dt}=1+\frac{\gamma}{\beta}ln u-s_0G_1(u)\\ For~ODE~function ~\frac{dv}{dt}+p(t)v=q(t)\\ The~solution~is~ v(t)=e^{-\int p(x)dx}C+e^{-\int p(x)dx}\int q(x)e^{\int p(x)dx}dx\\ Here~p(t)=\gamma+\alpha\\ q(t)=[1+\frac{\gamma}{\beta}ln u-s_0G_1(u)]\alpha\\\\ \because w(t)=-\frac{\gamma}{\beta}ln u\\ \frac{dw}{dt}=\gamma v(t)\Leftrightarrow -\frac{\gamma}{\beta}\frac{1}{u}\frac{du}{dt}=-\gamma v(t)\\ \therefore \frac{du}{dt}=\beta uv(t)\\ =\beta ue^{-\int (\gamma+\alpha)dx}C+e^{-\int(\gamma+\alpha)dx}\int [[1+\frac{\gamma}{\beta}ln u-s_0G_1(u)]\alpha]e^{\int (\gamma+\alpha)dx}dx\\ =C\beta ue^{-(\gamma+\alpha)t}+e^{-(\gamma+\alpha)t}\int [[1+\frac{\gamma}{\beta}ln u(t)-s_0G_1(u(t))]\alpha]e^{ (\gamma+\alpha)t}dt\\ v(t)=k=0∑∞qkik(t)=k=0∑∞qk(1−rk−ek−sk)=1−w(t)−m(t)−s0k=0∑∞qkuk=1+βγlnu−m(t)−s0G1(u)∴m(t)=1+βγlnu−s0G1(u)−v(t)∵m(t)=α1[dtdv(t)+γv(t)]∴(αγ+1)v(t)+α1dtdv(t)=1+βγlnu−s0G1(u)For ODE function dtdv+p(t)v=q(t)The solution is v(t)=e−∫p(x)dxC+e−∫p(x)dx∫q(x)e∫p(x)dxdxHere p(t)=γ+αq(t)=[1+βγlnu−s0G1(u)]α∵w(t)=−βγlnudtdw=γv(t)⇔−βγu1dtdu=−γv(t)∴dtdu=βuv(t)=βue−∫(γ+α)dxC+e−∫(γ+α)dx∫[[1+βγlnu−s0G1(u)]α]e∫(γ+α)dxdx=Cβue−(γ+α)t+e−(γ+α)t∫[[1+βγlnu(t)−s0G1(u(t))]α]e(γ+α)tdt
Assume s 0 = 1 ~s_0=1 s0=1:
d u d t = C β u e − ( γ + α ) t + e − ( γ + α ) t ∫ [ [ 1 + γ β l n u ( t ) − s 0 G 1 ( u ( t ) ) ] α ] e ( γ + α ) t d t s k ( t ) = u k s + e + i + r = 1 \frac{du}{dt}=C\beta ue^{-(\gamma+\alpha)t}+e^{-(\gamma+\alpha)t}\int [[1+\frac{\gamma}{\beta}ln u(t)-s_0G_1(u(t))]\alpha]e^{ (\gamma+\alpha)t}dt\\ s_k(t)=u^k\\ s+e +i+r=1 dtdu=Cβue−(γ+α)t+e−(γ+α)t∫[[1+βγlnu(t)−s0G1(u(t))]α]e(γ+α)tdtsk(t)=uks+e+i+r=1
With the above equations, we could fit the lines of the rate of susceptible, infectious and recovered people and get the parameter estimation of γ \gamma γ , β \beta β, and α \alpha α. ( γ \gamma γ in the MGF method is just parameter for τ i \tau_i τi, since p ( τ ) d τ = γ e γ τ d τ p(\tau)d\tau=\gamma e^{\gamma \tau}d\tau p(τ)dτ=γeγτdτ, β \beta β is the T i j T_{ij} Tij which is simplified for the paired transmission, α \alpha α is the rate that exposed people become sick)
Here, we could rewrite the model of SEIR on network:
s
k
(
t
)
=
u
(
t
)
k
d
u
d
t
=
C
β
u
e
−
(
γ
+
α
)
t
+
e
−
(
γ
+
α
)
t
∫
[
[
1
+
γ
β
l
n
u
(
t
)
−
s
0
G
1
(
u
(
t
)
)
]
α
]
e
(
γ
+
α
)
t
d
t
d
e
k
d
t
=
k
u
(
t
)
k
−
1
d
u
d
t
−
α
e
k
d
i
k
d
t
=
α
e
k
−
γ
i
k
d
r
k
d
t
=
γ
i
k
s
+
e
+
i
+
r
=
1
s_k(t)=u(t)^k\\ \frac{du}{dt}=C\beta ue^{-(\gamma+\alpha)t}+e^{-(\gamma+\alpha)t}\int [[1+\frac{\gamma}{\beta}ln u(t)-s_0G_1(u(t))]\alpha]e^{ (\gamma+\alpha)t}dt\\ \frac{de_k}{dt}=ku(t)^{k-1}\frac{du}{dt}-\alpha e_k\\ \frac{di_k}{dt}=\alpha e_k-\gamma i_k\\ \frac{dr_k}{dt}=\gamma i_k\\ s+e+i+r=1\\
sk(t)=u(t)kdtdu=Cβue−(γ+α)t+e−(γ+α)t∫[[1+βγlnu(t)−s0G1(u(t))]α]e(γ+α)tdtdtdek=ku(t)k−1dtdu−αekdtdik=αek−γikdtdrk=γiks+e+i+r=1
Also, we could drive their iteration form with
S
=
s
N
,
E
=
e
N
,
I
=
i
N
,
R
=
r
N
S=sN, E=eN,I=iN, R=rN
S=sN,E=eN,I=iN,R=rN and let
c
c
c be the number of people one contact:
U
n
−
α
γ
β
l
n
U
n
+
α
G
1
(
U
n
)
=
U
n
−
1
−
α
γ
β
l
n
U
n
−
1
+
α
G
1
(
U
n
−
1
)
+
C
β
U
n
−
1
e
−
(
γ
+
α
)
S
n
=
U
n
k
E
n
=
E
n
−
1
+
k
U
n
−
1
(
t
)
k
−
1
[
C
β
U
n
−
1
e
−
(
γ
+
α
)
+
[
γ
β
l
n
U
n
−
1
−
γ
β
l
n
U
n
−
2
−
s
0
α
[
G
1
(
U
n
−
1
)
−
G
1
(
U
n
−
2
)
]
−
α
E
n
−
1
I
n
=
I
n
−
1
+
α
E
n
−
1
−
γ
I
n
−
1
R
n
=
R
n
−
1
+
γ
I
n
−
1
U_n-\frac{\alpha\gamma}{\beta}ln U_{n}+\alpha G_1(U_n)=U_{n-1}-\frac{\alpha\gamma}{\beta}ln U_{n-1}+\alpha G_1(U_{n-1})+C\beta U_{n-1}e^{-(\gamma+\alpha)}\\ S_n=U_n^k\\ E_n=E_{n-1}+kU_{n-1}(t)^{k-1}[C\beta U_{n-1}e^{-(\gamma+\alpha)}+ [\frac{\gamma}{\beta}ln U_{n-1}-\frac{\gamma}{\beta}ln U_{n-2}-s_0\alpha[G_1(U_{n-1})-G_1(U_{n-2})]-\alpha E_{n-1}\\ I_n=I_{n-1}+\alpha E_{n-1}-\gamma I_{n-1}\\ R_n=R_{n-1}+\gamma I_{n-1}
Un−βαγlnUn+αG1(Un)=Un−1−βαγlnUn−1+αG1(Un−1)+CβUn−1e−(γ+α)Sn=UnkEn=En−1+kUn−1(t)k−1[CβUn−1e−(γ+α)+[βγlnUn−1−βγlnUn−2−s0α[G1(Un−1)−G1(Un−2)]−αEn−1In=In−1+αEn−1−γIn−1Rn=Rn−1+γIn−1