CDH 伪分布式环境搭建

版权声明:本文为博主原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接和本声明。
本文链接:https://blog.csdn.net/weixin_42295141/article/details/82627182

 安装环境服务部署规划

服务器IP

192.168.1.100

192.168.1.110

192.168.1.120

HDFS

NameNode

 

 

Secondary

NameNode

 

 

DataNode

DataNode

DataNode

YARN

ResourceManager

 

 

NodeManager

NodeManager

NodeManager

MapReduce

JobHistoryServer

 

 

 

 

 

 

 

 

 

 

注: 搭建过程需要考虑自己的环境目录和文档中的目录路径是否相同 以及 主机域名是否和文档中的域名相同

一:上传压缩包解压

将我们重新编译之后支持snappy压缩的hadoop包上传到第一台服务器并解压

第一台机器执行以下命令

cd /export/softwares/

mv hadoop-2.6.0-cdh5.14.0-自己编译后的版本.tar.gz hadoop-2.6.0-cdh5.14.0.tar.gz

tar -zxvf hadoop-2.6.0-cdh5.14.0.tar.gz -C ../servers/

二:查看hadoop支持的压缩方式以及本地库

第一台机器执行以下命令

cd /export/servers/hadoop-2.6.0-cdh5.14.0

bin/hadoop checknative

如果出现openssl为false,那么所有机器在线安装openssl即可,执行以下命令,虚拟机联网之后就可以在线进行安装了

yum -y install openssl-devel

三:修改配置文件

修改core-site.xml

第一台机器执行以下命令

cd /export/servers/hadoop-2.6.0-cdh5.14.0/etc/hadoop

vim core-site.xml

<configuration>
	<property>
		<name>fs.default.name</name>
		<value>hdfs://192.168.52.100:8020</value>
	</property>
	<property>
		<name>hadoop.tmp.dir</name>
		<value>/export/servers/hadoop-2.6.0-cdh5.14.0/hadoopDatas/tempDatas</value>
	</property>
	<!--  缓冲区大小,实际工作中根据服务器性能动态调整 -->
	<property>
		<name>io.file.buffer.size</name>
		<value>4096</value>
	</property>

	<!--  开启hdfs的垃圾桶机制,删除掉的数据可以从垃圾桶中回收,单位分钟 -->
	<property>
		<name>fs.trash.interval</name>
		<value>10080</value>
	</property>
</configuration>

修改hdfs-site.xml

第一台机器执行以下命令

cd /export/servers/hadoop-2.6.0-cdh5.14.0/etc/hadoop

vim hdfs-site.xml

<configuration>
	<!-- NameNode存储元数据信息的路径,实际工作中,一般先确定磁盘的挂载目录,然后多个目录用,进行分割   --> 
	<!--   集群动态上下线 
	<property>
		<name>dfs.hosts</name>
	<value>/export/servers/hadoop-2.6.0-cdh5.14.0/etc/hadoop/accept_host</value>
	</property>
	<property>
		<name>dfs.hosts.exclude</name>
		<value>/export/servers/hadoop-2.6.0-cdh5.14.0/etc/hadoop/deny_host</value>
	</property>
	 -->
	 
	 <property>
			<name>dfs.namenode.secondary.http-address</name>
			<value>node01:50090</value>
	</property>

	<property>
		<name>dfs.namenode.http-address</name>
		<value>node01:50070</value>
	</property>
	<property>
		<name>dfs.namenode.name.dir</name>
		<value>file:///export/servers/hadoop-2.6.0-cdh5.14.0/hadoopDatas/namenodeDatas</value>
	</property>
	<!--  定义dataNode数据存储的节点位置,实际工作中,一般先确定磁盘的挂载目录,然后多个目录用,进行分割  -->
	<property>
		<name>dfs.datanode.data.dir</name>
		<value>file:///export/servers/hadoop-2.6.0-cdh5.14.0/hadoopDatas/datanodeDatas</value>
	</property>
	
	<property>
		<name>dfs.namenode.edits.dir</name>
		<value>file:///export/servers/hadoop-2.6.0-cdh5.14.0/hadoopDatas/dfs/nn/edits</value>
	</property>
	<property>
		<name>dfs.namenode.checkpoint.dir</name>
		<value>file:///export/servers/hadoop-2.6.0-cdh5.14.0/hadoopDatas/dfs/snn/name</value>
	</property>
	<property>
		<name>dfs.namenode.checkpoint.edits.dir</name>
		<value>file:///export/servers/hadoop-2.6.0-cdh5.14.0/hadoopDatas/dfs/nn/snn/edits</value>
	</property>
	<property>
		<name>dfs.replication</name>
		<value>1</value>
	</property>
	<property>
		<name>dfs.permissions</name>
		<value>false</value>
	</property>
<property>
		<name>dfs.blocksize</name>
		<value>134217728</value>
	</property>
</configuration>

修改hadoop-env.sh

第一台机器执行以下命令

cd /export/servers/hadoop-2.6.0-cdh5.14.0/etc/hadoop

vim hadoop-env.sh

export JAVA_HOME=/export/servers/jdk1.8.0_141

修改mapred-site.xml

第一台机器执行以下命令

cd /export/servers/hadoop-2.6.0-cdh5.14.0/etc/hadoop

注: 原文件是 mapred-site.xml.template 可以先

cp mapred-site.xml.template mapred-site.xml

vim mapred-site.xml

<configuration>
	<property>
		<name>mapreduce.framework.name</name>
		<value>yarn</value>
	</property>

	<property>
		<name>mapreduce.job.ubertask.enable</name>
		<value>true</value>
	</property>
	
	<property>
		<name>mapreduce.jobhistory.address</name>
		<value>node01:10020</value>
	</property>

	<property>
		<name>mapreduce.jobhistory.webapp.address</name>
		<value>node01:19888</value>
	</property>
</configuration>

修改yarn-site.xml

第一台机器执行以下命令

cd /export/servers/hadoop-2.6.0-cdh5.14.0/etc/hadoop

vim yarn-site.xml

<configuration>
	<property>
		<name>yarn.resourcemanager.hostname</name>
		<value>node01</value>
	</property>
	<property>
		<name>yarn.nodemanager.aux-services</name>
		<value>mapreduce_shuffle</value>
	</property>
	
	<property>
		<name>yarn.log-aggregation-enable</name>
		<value>true</value>
	</property>
	<property>
		<name>yarn.log-aggregation.retain-seconds</name>
		<value>604800</value>
	</property>
</configuration>

修改slaves文件

第一台机器执行以下命令

cd /export/servers/hadoop-2.6.0-cdh5.14.0/etc/hadoop

vim slaves

注: 一定要删除原有文件中的内容!!

删除:

一定要改成自己的主机名, 且不要有其他多的空行

node01

node02

node03

四 :创建文件存放目录

node01机器上面创建以下目录 [ 这些都创建在 hadoop-2.6.0-cdh5.14.0 目录之下, 所以复制的时候其他机器就不用创建了 ]

mkdir -p /export/servers/hadoop-2.6.0-cdh5.14.0/hadoopDatas/tempDatas
mkdir -p /export/servers/hadoop-2.6.0-cdh5.14.0/hadoopDatas/namenodeDatas
mkdir -p /export/servers/hadoop-2.6.0-cdh5.14.0/hadoopDatas/datanodeDatas 
mkdir -p /export/servers/hadoop-2.6.0-cdh5.14.0/hadoopDatas/dfs/nn/edits
mkdir -p /export/servers/hadoop-2.6.0-cdh5.14.0/hadoopDatas/dfs/snn/name
mkdir -p /export/servers/hadoop-2.6.0-cdh5.14.0/hadoopDatas/dfs/nn/snn/edits

五:安装包的分发

第一台机器执行以下命令

cd /export/servers/

scp -r hadoop-2.6.0-cdh5.14.0/ node02:$PWD

scp -r hadoop-2.6.0-cdh5.14.0/ node03:$PWD

六:配置hadoop的环境变量

三台机器执行以下命令

vim  /etc/profile

export HADOOP_HOME=/export/servers/hadoop-2.6.0-cdh5.14.0

export PATH=:$HADOOP_HOME/bin:$HADOOP_HOME/sbin:$PATH

注:可以不用拷贝到每台机器

scp /etc/profile node02:/etc/

scp /etc/profile node03:/etc/

配置完成之后生效 每台机器都更新一遍

source /etc/profile

七:集群启动

要启动 Hadoop 集群,需要启动 HDFS 和 YARN 两个集群。

注意:

首次启动HDFS时,必须对其进行格式化操作。本质上是一些清理和准备工作,因为此时的 HDFS 在物理上还是不存在的。

在主节点格式化:

bin/hdfs namenode -format 或者

bin/hadoop namenode -format

{{{{单个节点逐一启动 [基本不用]

在主节点上使用以下命令启动 HDFS NameNode:

hadoop-daemon.sh start namenode    //一台一个进程 namenode

hadoop-daemons.sh start namenode   //多台机器同时启动namenode、的进程
只需要把命令中的start 改为stop  即可}}}}

脚本一键启动(推荐)

如果配置了 etc/hadoop/slaves 和 ssh 免密登录,则可以使用程序脚本启动所有Hadoop 两个集群的相关进程,在主节点所设定的机器上执行。

启动集群

node01节点上执行以下命令

第一台机器执行以下命令

cd /export/servers/hadoop-2.6.0-cdh5.14.0/

sbin/start-dfs.sh

sbin/start-yarn.sh

sbin/mr-jobhistory-daemon.sh start historyserver

【或者:sbin/start-all.sh  和 启动 sbin/mr-jobhistory-daemon.sh stop historyserver】

停止集群:没事儿不要去停止集群

sbin/stop-dfs.sh

sbin/stop-yarn.sh

sbin/mr-jobhistory-daemon.sh stop historyserver

八:浏览器查看启动页面

hdfs集群访问地址

http://node01:50070/dfshealth.html#tab-overview 

yarn集群访问地址

http://node01:8088/cluster

jobhistory访问地址:[和自己启动historyserver 位置相同]

http://node01:19888/jobhistory

HDFS 使用初体验

从Linux 本地上传一个文本文件到 hdfs 的/test/input 目录下

hadoop fs -mkdir -p /test/input

hadoop fs -put /root/install.log  /test/input

mapreduce程序初体验

在 Hadoop 安装包的

hadoop-2.6.0-cdh5.14.0/share/hadoop/mapreduce 下有官方自带的mapreduce 程序。我们可以使用如下的命令进行运行测试。

示例程序jar:

hadoop-mapreduce-examples-2.6.0-cdh5.14.0.jar

计算圆周率:

hadoop jar  /export/servers/hadoop-2.6.0-cdh5.14.0/share/hadoop/mapreduce/hadoop-mapreduce-examples-2.6.0-cdh5.14.0.jar  pi  2 5

关于圆周率的估算,感兴趣的可以查询资料 Monte Carlo 方法来计算 Pi 值。

注: pi 后面的值 2 5 不要改大, 测试即可, 太大有些同学的电脑会崩溃

九:测试写入速度

向HDFS文件系统中写入数据,10个文件,每个文件10MB,文件存放到

/benchmarks/TestDFSIO中

hadoop jar /export/servers/hadoop-2.6.0-cdh5.14.0/share/hadoop/mapreduce/hadoop-mapreduce-client-jobclient-2.6.0-cdh5.14.0.jar TestDFSIO  -write -nrFiles 10 -fileSize 10MB

完成之后查看写入速度结果

hdfs dfs -text /benchmarks/TestDFSIO/io_write/part-00000

十:测试读取速度

测试hdfs的读取文件性能

在HDFS文件系统中读入10个文件,每个文件10M

hadoop jar /export/servers/hadoop-2.6.0-cdh5.14.0/share/hadoop/mapreduce/hadoop-mapreduce-client-jobclient-2.6.0-cdh5.14.0.jar TestDFSIO -read -nrFiles 10 -fileSize 10MB

查看读取结果

hdfs dfs -text /benchmarks/TestDFSIO/io_read/part-00000

十一:清除测试数据

hadoop jar /export/servers/hadoop-2.6.0-cdh5.14.0/share/hadoop/mapreduce/hadoop-mapreduce-client-jobclient-2.6.0-cdh5.14.0.jar TestDFSIO -clean

更多基准测试参见:实际工作中按照自己的集群配置进行测试

https://blog.csdn.net/azhao_dn/article/details/6930909

展开阅读全文

没有更多推荐了,返回首页