matlab二维傅里叶变换ffshift,形象理解二维傅里叶变换

本文介绍了二维傅里叶变换的概念,将图像分解为复平面波的组合,并探讨了二维频率域K-SPACE的性质,包括离散2D-FT、旋转不变性和采样问题。解释了为何在matlab中使用fftshift使零频回到中心,并给出了去噪的应用示例。
摘要由CSDN通过智能技术生成

点击上方“机器学习与生成对抗网络”,关注"星标"

获取有趣、好玩的前沿干货!

来自 | 知乎  阿姆斯特朗

链接 | https://zhuanlan.zhihu.com/p/110026009

文仅交流,侵删

1.回顾一下一维FT

公式:

7fda2bd8666d54ed75fdd6bf66874c7916a.jpg

通俗来讲,一维傅里叶变换是将一个一维的信号分解成若干个复指数波

a8bc6985e8043277bbcfaa01ca002545d11.jpg 。而由于 

d737e97f037ff5ce27dfe229f1b3f8cc1e1.jpg ,所以可以将每一个复指数波 

a8bc6985e8043277bbcfaa01ca002545d11.jpg都视为是

余弦波+j*正弦波的组合。

对于一个正弦波而言,需要三个参数来确定它:频率

88d306ea636ab151d14f795806b074e21d4.jpg ,幅度 

1bd3681b289d1c2dae5749f14b042538426.jpg ,相位 

d72a7d4020418472dd4b01935ec511be442.jpg 。因此在频域中,一维坐标代表频率,而每个坐标对应的函数值也就是 

eb2bb3f7073cd44daeef7762d1e066e1cb2.jpg 是一个复数,其中它的幅度 

41a303d9c306d1f64018a70414275393361.jpg 就是这个频率正弦波的幅度 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值