sklearn各模块详解(2)

2 .model_selection

超参数搜索

1.model_selection.GridSearchCV(estimator, param_grid, scoring=None, n_jobs=None, iid=’warn’, refit=True, cv=’warn’, verbose=0, pre_dispatch=‘2*n_jobs’, error_score=’raise-deprecating’, return_train_score=False) 网格搜索
参数:

param_grid:指定参数空间,以字典形式给出。若有多个参数空间则用list框起来。
scoring:评价准则,若不指定则默认学习器自带的评价准则
n_jobs:指定要并行计算的线程数,默认为None即1,如果设定为-1则表示使用全部cpu。
iid
refit
verbose
pre_dispatch
error_score
return_train_score

属性:

cv_results_:返回网格搜索的结果
best_estimator_:返回最优的学习器
best_params_:返回最优的参数
best_score_:返回最优的评价值


2.model_selection.RandomizedSearchCV(estimator, param_distributions, n_iter=10, scoring=None, n_jobs=None, iid=’warn’, refit=True, cv=’warn’, verbose=0, pre_dispatch=‘2*n_jobs’, random_state=None, error_score=’raise-deprecating’, return_train_score=False)随机搜索
参数:

estimator:略
param_distributions:参数的分布,写法和上面的param_grid相似,字典值里是一个随机分布,如果给的是一个list则默认均匀分布。
n_iter
scoring:略
n_jobs:略
iid
refit
cv:略
verbose
pre_dispatch
random_state:略
error_score
return_train_score

属性同GridSearchCV

五、.pipeline

1.make_pipeline

六、.datasets

1.load_iris

七、.feature_extraction特征提取

7.1

  1. .text.CountVectorizer(input=’content’, encoding=’utf-8’, decode_error=’strict’, strip_accents=None, lowercase=True, preprocessor=None, tokenizer=None, stop_words=None, token_pattern=’(?u)\b\w\w+\b’, ngram_range=(1, 1), analyzer=’word’, max_df=1.0, min_df=1, max_features=None, vocabulary=None, binary=False, dtype=<class ‘numpy.int64’>)对单列文本做标记和计数。

八、.feature_selection

特征选择一文通

  1. .VarianceThreshold(threshold=0.0):过滤法-方差阈值
  2. .SelectKBest(score_func=<function f_classif>, k=10)

score_func:指定过滤法中的评价准则,默认为f值。

  1. .SelectPercentile(score_func=<function f_classif>, percentile=10)
  2. .SelectFpr(score_func=<function f_classif>, alpha=0.05)
  3. .SelectFdr(score_func=<function f_classif>, alpha=0.05)
  4. .SelectFwe(score_func=<function f_classif>, alpha=0.05)
  5. .GenericUnivariateSelect(score_func=<function f_classif>, mode=’percentile’, param=1e-05):通用的特征筛选器。
  6. .f_regression(X, y, center=True)
  7. .mutual_info_regression(X, y, discrete_features=’auto’, n_neighbors=3, copy=True, random_state=None):互信息。
  8. .chi2(X, y)
  9. .f_classif(X, y)
  10. .mutual_info_classif(X, y, discrete_features=’auto’, n_neighbors=3, copy=True, random_state=None)
  11. .RFE(estimator, n_features_to_select=None, step=1, verbose=0):RFE嵌入法。
  12. .SelectFromModel(estimator, threshold=None, prefit=False, norm_order=1, max_features=None):自选模型嵌入法。
已标记关键词 清除标记
相关推荐
©️2020 CSDN 皮肤主题: 技术工厂 设计师:CSDN官方博客 返回首页