2021南大855(人工智能)考研计划一览

0 写在前面

2021年是NJU人工智能学院研究生第三年招生。
南京大学855 人工智能全日制研究生
理想分数:初试,满分500,目标400分,其中数学140,专业课120,英语80,政治60。复试,满分300,目标200。

12/28:初试部分不再更新。初试已经结束,成绩在二月初公布,开始准备复试了
需要交流直接私信。推免和lamda相关的不要问我…我一点都不懂。

参考资料:

  1. 人工智能学院19考研经验贴Wiki
  2. 人工智能学院20考研经验贴Wiki
  3. 21南大人工智能考研 QQ群:686411297
  4. 南大人院官网

1 计划一览表

时间仅个人记录,不是参考复习时间。

1.1 考研复习基础阶段(11月1日-5月6日)

基础阶段着重于基础,要能做到拿到题目知道考的哪一块知识点并且能给出一些思路(除政治外)

1.1.1 考研数学

时间任务备注进度
11.17-11.27张宇高数36讲这部分基础较好并且大一大二各刷过一边,用较快速度过。结束
11.17-11.27张宇闭关修炼配合强化班使用结束
1.6-3.10,4.22-5.6张宇1000题第一轮打基础过程中最重要的题包,考研基本上就只刷这个题了,会刷2遍,掌握的题直接划去。一轮结束

1.1.2 考研专业课

时间任务备注进度
11.17-12.15《C++ primer plus》+菜鸟教程掌握C++基本语法,遇到再学结束
12.18-1.2,3.25-4.11数据结构,算法设计与分析两轮基本概念都了解,剩下的通过刷题来巩固结束
12.25-12.30人工智能,aima书和博客,粗略看一遍即可结束
2.1-2.6西瓜书二刷在准备考研之前就已经读过一遍,不过不了解考试重点,还是先巩固一下基础结束

1.1.3 考研英语

时间任务备注
1.7-4.20绿皮书词汇一天一个list,注意复习结束

1.1.4 其它

时间任务备注
1月6日-3月25日复现数据竞赛topline,包括但不限于回归、分类、CV、NLP花了许多时间依然没有拿到好成绩,希望考上研有更好的资源去学习和参加竞赛吧,结束。

1.2 考研复习强化阶段(5月7日-9月9日)

强化阶段着重于,要做到有吃透题目,也就是拿到题目知道考什么、用什么方法、回忆类似的题型的实力。
2020/7/9:这里我必须分享一种我觉得超有效率的学习方法,基本思想是大事化小,小事化了,即(在足够自信的基础上)对于已经掌握的知识点(或是已经学会的单词等等)直接划去,这样做我觉得一可以明确自己的薄弱点,二在学习过程中会有大大的成就感。另外考虑到遗忘,所以我在遇到不会的题或者其他东西的时候就会记下来,然后学完之后继续划去。因此我喜欢看电子版的书,刷电子版的题,因为可以省笔油,而且划得快。

1.2.1 考研数学

时间任务备注进度
5.26-8.27实战数一(模拟卷+真题)当作考试来做结束
6.26-7.9数一真题练习题通常难度是在真题之上的,这个任务目标是适应难度,抓住复习重点。我分成四个部分,1微分(极限,一元微分,多元微分,微分方程),2积分(一元积分,重积分,解析几何),3(无穷级数,证明题,概率论),4(线性代数)结束
5.7-5.20张宇1000题第二轮第二轮就是把没划去的题逐渐划去,若做模拟卷时做错了题就从相应的题取消划去操作,建立自己的题库(典型题、错题、难题)结束
6.20-8.27保持状态茆诗松和张宇结束

1.2.2 考研专业课

时间任务备注进度
8.6-8.21每天leetcode题解学习结束
5.7-6.5845,855,408相关真题都做一遍自建题库,不够的话去王道天勤牛客。855结束、845结束、ai习题整理完毕、408结束
6.20-8.27保持状态每天都得看殷/黄/aima/西瓜书结束

1.2.3 考研英语

时间任务备注进度
5.7-9.9建立生词本,每天复习结束
5.7-6.27张剑阅读理解精读结束
8.25-9.9专项训练结束

1.2.4 考研政治

政治基础较差,提前花点时间补基础。

时间任务备注进度
7.15-7.26徐涛《核心考案》+强化班结束
7-27-8.20《1000题》,真题,思维导图结束后也要保持状态结束

1.3 考研复习冲刺阶段(9月10日-12月27日)

1.3.1 考研数学

时间任务备注进度
9.10大纲透析结束
9.15-9.16最后一轮系统复习结束
9.19-12.27刷完世界上所有的卷子尽量当作考试来做结束

1.3.2 考研政治

时间任务备注进度
9.10大纲透析结束
9.10-9.11最后一轮复习结束
9.19-12.27刷完世界上所有的卷子尽量当作考试来做结束

1.3.3 考研英语

时间任务备注进度
9.11大纲透析结束
9.11-12.27刷完世界上所有的卷子尽量当作考试来做结束

1.3.4 考研专业课

时间任务备注进度
9.13-9.15最后一轮系统复习结束
9.19-12.27刷完世界上所有的卷子尽量当作考试来做结束

1.3.5 其它

时间任务备注
9月19日英语六级考试结束

1.4 复试准备阶段(1月1日-3月16日)

时间线应该是2月中公布初试成绩——3月初公布复试名单——3月中复试。

需要做的事是完成学业残余任务、上机练习机器学习知识储备、打些比赛、离散数学英语口语与听力面试问答准备等。

2 资料

2.1 考研科目

2.1.1 初试

  1. 101 思想政治理论

试卷题型分值分布

  • 单选: 16 ∗ 1 ′ = 1 6 ′ 16*1'=16' 161=16
  • 多选: 17 ∗ 2 ′ = 3 4 ′ 17*2'=34' 172=34
  • 案例分析: 5 ∗ 1 0 ′ = 5 0 ′ 5*10'=50' 510=50

我用的书:

  • (看完了)徐涛 核心考案
  • (完)徐涛刷题
  • (完)徐涛真题
  • 11月和12月用书:肖秀荣8+4,徐涛8,王吉4,徐涛时政,徐涛20题,王吉20题
  1. 201 英语一

试卷范围分值分布

  • 完型: 20 ∗ 0. 5 ′ = 1 0 ′ 20*0.5'=10' 200.5=10
  • 阅读: 4 ∗ 5 ∗ 2 ′ = 4 0 ′ 4*5*2'=40' 452=40
  • 新阅读: 5 ∗ 2 ′ = 1 0 ′ 5*2'=10' 52=10
  • 翻译: 5 ∗ 2 ′ = 1 0 ′ 5*2'=10' 52=10
  • 小作文(应用文写作): 1 0 ′ 10' 10
  • 大作文: 2 0 ′ 20' 20

我用的书

  • (看完了)词汇:绿皮书
  • (做完了)阅读:张剑黄皮书
  • (完)作文:张剑写作高分突破
  • (完)真题
  • 11月和12月用书:2020年真题,刘晓燕5套卷,作文书,张剑黄皮5套卷
  1. 301 数学一

试卷范围分值分布:

  • 高数: 90 90 90,6个单选,4个填空,4个简答
  • 线代: 3 3 ′ 33' 33,2个单选,1个填空,1个简答
  • 概率论: 3 3 ′ 33' 33,2个单选,1个填空,1个简答

试卷题型分值分布

  • 单选: 10 ∗ 5 ′ = 5 0 ′ 10*5'=50' 105=50
  • 填空: 6 ∗ 5 ′ = 3 0 ′ 6*5'=30' 65=30
  • 简答:6题共 7 0 ′ 70' 70

我用的书

  • (看完了)张宇36讲
  • (看完了)张宇1000题
  • (看完了)张宇闭关修炼
  • (看完了)真题、去年的模拟卷
  • 11月和12月用书:张宇8+4,汤家凤8,李永乐8,李林8+4,合工大超越5共创5
  1. 855 数据结构、算法、人工智能、 概率统计

试卷题型分值分布

  • 单选: 40 ∗ 2 ′ = 8 0 ′ 40*2'=80' 402=80
  • 简答:8题共 7 0 ′ 70' 70

参考用书

  • (看完了)人工智能:一种现代的方法(第3版)(影印版) (英语) 平装,拉塞尔(Stuart J.Russell), 诺维格(Peter Norvig) 有译版,通常叫这本书为aima。以aima的书为主,辅助mooc 。 以去年的经验,西瓜书前10章+aima的搜索、学习部分也足够应对考试,逻辑需要了解些基本概念
  • (看完了)《机器学习》周志华,也叫西瓜书
  • (看完了)《数据结构(用面向对象方法与C++描述)》(第二版),殷人昆等,清华大学出版社;一定要带上配套习题和解析
  • (这本我没看,看黄宇那本就可以了)计算机算法——设计与分析导论 (影印版,Computer Algorithms: Introduction to Design and Analysis, 3rd Edition),Sara Baase, Allen Van Gelder 编著,高等教育出版
  • (看完了)《算法设计与分析》 黄宇
  • 《算法导论》第三版。辅助学习,不是考试重点。
  • (看完了)《概率论与数理统计》,高祖新、陈华均(编),南京大学出版社 推荐 浙大第四版或者南大本科用的概率论 (傅冬生)。我用的是茆诗松的。

2.1.2 复试

  1. 3701 笔试:离散数学

参考用书:

  • 离散数学 屈婉玲第二版 (有配套习题解析) 配合<离散数学及其应用>
    离散重点可以参考cs大里的资料。
    离散全是证明,重点逻辑 集合 群 图(其实都是重点)
  1. 3702 笔试:机器学习

参考用书:

  • 机器学习 周志华
  1. 3703 C++程序设计上机考试
  • C++语言基础这里就不给建议了,学个基础就行了。比如可以在《C++ primer plus》第六版(这本是我用的,发现里面太多无关知识了,就当作字典粗略看一下就行了)、菜鸟教程等地方学习。

  • 难度:<=PAT甲,小于等于Leetcode Medium,题面纯英文
    南大喜欢考bfs dfs dp这些,着重注意一下
    想追求更好分数的可以刷一下牛客网或者leetcode

  • 编译器:C++ Vs2013 Dev
    Java eclipse

  1. 3704 综合面试
  • 面试是全英语?面试哪几个方面进行准备
  • 考核内容包括专业知识,综合能力(含思想品德考核)、英语能力。
    英文自我介绍并回答2个左右的问题。
  • 准备的话,如果做过项目准备项目,没做过项目把基础打好,尤其是数学和机器学习相关的。

2.2 历年招生情况

2.2.1 2019年(第一年招生)

拟招收总人数其中拟接收推免生人数拟录取人数
352835
报名人数录取人数其中免试人数
963528

实际考研预录取情况
有10个同学进入复试最终选了分数前七的。
在这里插入图片描述

2.2.2 2020年(第二年招生)

学校招生安排

拟招收总人数其中拟接收推免生人数拟录取人数
453510

扩招后招生安排

拟招收总人数其中拟接收推免生人数拟录取人数
603525

进入复试的初试成绩(30人)
在这里插入图片描述

拟录取(25人),可以看出初试排名靠前全部录取,排名靠后也可逆袭
在这里插入图片描述

2.2.3 2021年(第三年招生)

学校招生安排

拟招收总人数其中拟接收推免生人数拟录取人数
554411

2.3 专业课真题回忆

真题回忆参考历年考生的回忆和总结,并给出我的参考答案。

2.3.1 2019年

2.3.1.1 选择题

大致上四科比例基本一致,难度不大

2.3.1.2 大题

数据结构10分 算法26分 AI 14分 概率论20分

  1. (AI)一道问过拟合的原因和解决方案,
    在训练充足后,学习器的拟合能力已经非常强,此时训练误差仍在逐渐减少,甚至拟合了训练数据中的噪声和训练样例中没有代表性的特征,导致这时候方差逐渐主导了泛化误差,使得测试误差逐渐增大,发生过拟合。
    解决方法:简化模型(减少模型参数)、正则化、增加训练样本、Early Stopping、ensemble(集成学习算法也可以有效的减轻过拟合。Bagging通过平均多个模型的结果,来降低模型的方差。Boosting不仅能够减小偏差,还能减小方差)。
  2. (AI)一题naive bayes的独立性假设的解释,一道贝叶斯预制函数 说明作用
    每个属性独立地对类别产生影响
  3. (数据结构)写中序二叉树递归 画二叉树
  4. (算法)一道时间复杂度估计
  5. (算法)dp(最长公共子序列),字符距离算法优化16分
    用二维数组c[i][j]记录串x1x2⋯xi与y1y2⋯yj的LCS长度,则可得到状态转移方程
    在这里插入图片描述
    在这里插入图片描述
  6. (算法)一道希尔排序,写完整个过程。
  7. (数理统计)一道多维变量的数一典型例题:密度函数定义,边缘分布,独立性,z=x+y。
  8. (数理统计)统计量(均值方差等),假设检验(双边t检验,占分值较高)。

2.3.2 2020年

2.3.2.1 选择题

  1. (AI)bfs和dfs哪个空间更少,以及迭代加深搜索
  2. (数据结构)k路归并最好情况下时间复杂度 O(nlog2k)
  3. (AI)迭代加深的深度优先遍历,时间复杂度更近似于dfs/bfs,空间复杂度更近似于dfs/bfs
  4. (AI)α-β剪枝的说法错误的是,A,一种加速方法 B,针对minimax决策树 C,能够加快搜索 D,能够节省存储空间 BCD都是对的,A不知道在说什么所以选A
  5. (AI)命题逻辑和一阶逻辑的关系
  6. (AI)具有无限VC维度的是 1,神经网络 2决策树 3,聚类算法 4,朴素贝叶斯
  7. (AI)被誉为人工智能之父的是谁 西瓜书P22,约翰·麦卡锡
  8. (算法)问哪一个是贪婪算法 A 01背包问题,B迪杰斯特拉算法, C快排,D弗洛伊德。(B)
  9. (数据结构)哈夫曼树度为m 有叶子结点n个 问其非叶子结点的数目。殷书P240

这题表示哈夫曼树的节点 的度要么是0要么是m
设度不为0(即非叶结点)的个数为X
则总的结点数为:X+n
除叶结点外,对于度为m的每个结点都有m个分支,而度为0的结点是没有分支的,所以从分支的情况来看
总的结点数位:X*m + 1(这里的1为根结点)
两者相等,所以答案是 (n-1) / (m-1)

  1. (数据结构)二叉中序线索树 问一个有左子女非终端节点的前驱是哪个节点?殷书P213,左子树中序下的最后一个节点(子树中最右下的节点)

  2. (数据结构)设F是一个森林,B是由F转换得到的二叉树,F中有n个非终端结点,B中右指针域为空的结点有? 殷书P225,殷书练习册5.42(13)(答案为A) A . n + 1 B . n C . n − 1 D . n + 2 A. n+1 \quad B. n \quad C. n-1 \quad D. n+2 A.n1B.nC.n1D.n+2

  3. (算法)基本有序的元素适合的算法 没有选项,(改进的)冒泡排序/插入排序

  4. (算法)采用递归方式对顺序表进行快速排序,下列关于递归次数的叙述中,正确的是(D
    A递归次数与初始数据的排列次序无关
    B每次划分后,先处理较长的分区可以减少递归次数
    C每次划分后,先处理较短的分区可以减少递归次数
    D递归次数与每次划分后得到的分区处理顺序无关

  5. (数理统计)事件独立互斥

  6. (算法)dp理论相关的一道 题目忘了

2.3.2.2 大题

  1. (算法)上n节楼梯,只能蹦一层,两层。问有多少种蹦法,分析“计算”复杂度
    f(1)=1,f(2)=2,f(n)=f(n-1)+f(n-2)
    O(2^n)

  2. (数据结构)avl平衡树插入节点画转换后的树
    在这里插入图片描述

  3. (数据结构)循环链表填代码,约瑟夫问题,(殷书P68)

  4. (数据结构)哈夫曼,给出了哈弗曼编码,A1 E01 S000 T001,根据01序列还原字符串,画出哈夫曼树。(殷书P244)

  5. (AI)井字棋的最大最小值以及最佳策略,最大最小搜索树画图,书上例题
    在这里插入图片描述
    以书上例题作为题设(最后一句话忽略)
    在这里插入图片描述
    则答案如下图所示
    在这里插入图片描述
    当然是走右边那条路了。

  6. (AI)过拟合分析,给了一个神经网络训练和测试误差图,训练误差逐渐减小,测试误差先减小后开始回升,由此判断是什么现象,分析其中原因,给解决方法
    在这里插入图片描述
    在迭代初期,神经网络(学习器)的拟合效果不够强,训练误差和测试误差都比较大,此时偏差主导误差,发生欠拟合。随着迭代的进行(随着训练的加深),神经网络(学习器)拟合效果逐渐增强,训练误差和测试误差逐渐减小。但在迭代的后期(训练充足后),神经网络(学习器)的拟合能力已经非常强,此时训练误差仍在逐渐减少,甚至到最后训练误差为0,即完全拟合训练集,甚至拟合了训练数据中的噪声和训练样例中没有代表性的特征,导致这时候方差逐渐主导了泛化误差,使得测试误差逐渐增大(回升),此时发生过拟合。
    解决办法:简化模型(减少神经网络的层数或减少部分层的神经元数量)、正则化、增加训练样本、Dropout、Early Stopping、ensemble(集成学习算法也可以有效的减轻过拟合。Bagging通过平均多个模型的结果,来降低模型的方差。Boosting不仅能够减小偏差,还能减小方差)。

  7. (概率论)求概率密度,分四小问,一求参数,二求边缘密度函数,三求是否相互独立,四求z=x+y概率密度;

  8. (概率论)矩估计和极大似然估计

2.4 导师和实验室等资料

LAMDA官网
LAMDA招生说明

3 可能有用的资料

已标记关键词 清除标记
©️2020 CSDN 皮肤主题: 技术工厂 设计师:CSDN官方博客 返回首页