c语言结构体函数平面向量加法公式,插值 拟合 符号变量与符号表达式 微积分 解方程 向量运算...

本文介绍了MATLAB中的分段线性插值、最小二乘法拟合,以及符号变量、微积分和解方程的基础操作。通过实例展示了如何使用interp1进行一维插值,polyfit进行最小二乘法拟合,以及如何定义和操作符号变量进行微积分运算。
摘要由CSDN通过智能技术生成

a4c26d1e5885305701be709a3d33442f.png

7.1.1 分段线性插值

所谓分段线性插值就是通过插值点用折线段连接起来逼近原曲线,这也是计算机绘制图形的基本原理。实现分

段线性插值不需编制函数程序,MATLAB自身提供了内部函数interp1其主要用法如下:

interp1(x,y,xi) 一维插值

◆ yi=interp1(x,y,xi) 对一组点(x,y) 进行插值,计算插值点xi的函数值。x为节点向量值,y为对应的节点函数值。如果y 为矩阵,

则插值对y 的每一列进行,若y 的维数超出x 或 xi 的维数,则返回NaN。

◆ yi=interp1(y,xi) 此格式默认x=1:n ,n为向量y的元素个数值,或等于矩阵y的size(y,1)。

yi=interp1(x,y,xi,’method’) method用来指定插值的算法。默认为线性算法。其值常用的可以是如下的字符串。

nearest 线性最近项插值。

linear 线性插值。

spline 三次样条插值。

cubic 三次插值。

所有的插值方法要求x是单调的。x 也可能并非连续等距的。

正弦曲线的插值示例:

>> x=0:0.1:10;

>> y=sin(x);

>> xi=0:0.25:10;

>> yi=interp1(x,y,xi);

>> plot(x,y,’0’,xi,yi)

则可以得到相应的插值曲线(读者可自己上机实验)。

Matlab也能够完成二维插值的运算,相应的函数为interp2,使用方法与interpl基本相同,只是输入和输出的

参数为矩阵,对应于二维平面上的数据点,详细的用法见Matlab联机帮助。

7.1.2 最小二乘法拟合

在科学实验的统计方法研究中,往往要从一组实验数据 中寻找出自变量x 和因变量y之间的函数关系y=f(x) 。

由于观测数据往往不够准确,因此并不要求y=f(x)经过所有的点 ,而只要求在给定点

上误差按照某种标准

达到最小,通常采用欧氏范数 作为误差量度的标准。这就是所谓的最小二乘法。在MATLAB中实现最小二乘法

拟合通常采用polyfit函数进行。

函数polyfit是指用一个多项式函数来对已知数据进行拟合,我们以下列数据为例介绍这个函数的用法:

>> x=0:0.1:1;</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值